Skip to main content

Turing Patterns in Deserts

  • Conference paper
How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

Abstract

Self-organised patterns of vegetation are a characteristic feature of many semi-arid regions. In particular, banded vegetation is typical on hillsides. Mathematical modelling is widely used to study these banded patterns, because there are no laboratory replicates. I will describe the development of spatial patterns in an established model for banded vegetation via a Turing bifurcation. I will discuss numerical simulations of the phenomenon, and I will summarise nonlinear analysis on the existence and form of spatial patterns as a function of the model parameter that corresponds to mean annual rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valentin, C., d’Herbès, J.M., Poesen, J.: Soil and water components of banded vegetation patterns. Catena 37, 1–24 (1999)

    Article  Google Scholar 

  2. Rietkerk, M., Dekker, S.C., de Ruiter, P.C., van de Koppel, J.: Self–organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)

    Article  Google Scholar 

  3. Dunkerley, D.L., Brown, K.J.: Oblique vegetation banding in the Australian arid zone: implications for theories of pattern evolution and maintenance. J. Arid Environ. 52, 163–181 (2002)

    Article  Google Scholar 

  4. Berg, S.S., Dunkerley, D.L.: Patterned mulga near Alice Springs, central Australia, and the potential threat of firewood collection on this vegetation community. J. Arid Environ. 59, 313–350 (2004)

    Article  Google Scholar 

  5. Montaña, C.: The colonization of bare areas in two–phase mosaics of an arid ecosystem. J. Ecol. 80, 315–327 (1992)

    Article  Google Scholar 

  6. McDonald, A.K., Kinucan, R.J., Loomis, L.E.: Ecohydrological interactions within banded vegetation in the northeastern Chihuahuan Desert, USA. Ecohydrology 2, 66–71 (2009)

    Article  Google Scholar 

  7. MacFadyen, W.: Vegetation patterns in the semi–desert plains of British Somaliland. Geographical J. 115, 199–211 (1950)

    Article  Google Scholar 

  8. Valentin, C., d’Herbès, J.M.: Niger tiger bush as a natural water harvesting system. Catena 37, 231–256 (1999)

    Article  Google Scholar 

  9. Couteron, P., Mahamane, A., Ouedraogo, P., Seghieri, J.: Differences between banded thickets (tiger bush) at two sites in West Africa. J. Veg. Sci. 11, 321–328 (2000)

    Article  Google Scholar 

  10. Borgogno, F., D’Odorico, P., Laio, F., Ridolfi, L.: Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophys. 47, art. no. RG1005 (2009)

    Google Scholar 

  11. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)

    Article  Google Scholar 

  12. HilleRisLambers, R., Rietkerk, M., van de Bosch, F., Prins, H.H.T., de Kroon, H.: Vegetation pattern formation in semi–arid grazing systems. Ecology 82, 50–61 (2001)

    Article  Google Scholar 

  13. Rietkerk, M., Boerlijst, M.C., van Langevelde, F., HilleRisLambers, R., van de Koppel, J., Prins, H.H.T., de Roos, A.: Self–organisation of vegetation in arid ecosystems, Am. Am. Nat. 160, 524–530 (2002)

    Article  Google Scholar 

  14. Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., Meron, E.: A mathematical model of plants as ecosystem engineers, J. J. Theor. Biol. 244, 680–691 (2007)

    Article  Google Scholar 

  15. Ursino, N.: Modeling banded vegetation patterns in semiarid regions: inter–dependence between biomass growth rate and relevant hydrological processes. Water Resour. Res. 43, W04412 (2007)

    Google Scholar 

  16. Ursino, N.: Above and below ground biomass patterns in arid lands. Ecological Modelling 220, 1411–1418 (2009)

    Article  Google Scholar 

  17. Ursino, N., Contarini, S.: Stability of banded vegetation patterns under seasonal rainfall and limited soil moisture storage capacity. Adv. Water Resour. 29, 1556–1564 (2006)

    Article  Google Scholar 

  18. Guttal, V., Jayaprakash, C.: Self–organisation and productivity in semi–arid ecosystems: implications of seasonality in rainfall. J. Theor Biol. 248, 290–500 (2007)

    Article  Google Scholar 

  19. Kletter, A.Y., von Hardenberg, J., Meron, E., Provenzale, A.: Patterned vegetation and rainfall intermittency. J. Theor. Biol. 256, 574–583 (2009)

    Article  Google Scholar 

  20. van de Koppel, J., Rietkerk, M., van Langevelde, F., Kumar, L., Klausmeier, C.A., Fryxell, J.M., Hearne, J.W., van Andel, J., de Ridder, N., Skidmore, M.A., Stroosnijder, L., Prins, H.H.T.: Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Am. Nat. 159, 209–218 (2002)

    Article  Google Scholar 

  21. Pueyo, Y., Kefi, S., Alados, C.L., Rietkerk, M.: Dispersal strategies and spatial organization of vegetation in arid ecosystems. Oikos 117, 1522–1532 (2008)

    Article  Google Scholar 

  22. Kefi, S., Rietkerk, M., Katul, G.G.: Vegetation pattern shift as a result of rising atmospheric CO2 in arid ecosystems. Theor. Pop. Biol. 74, 332–344 (2008)

    Article  MATH  Google Scholar 

  23. Lefever, R., Lejeune, O.: On the origin of tiger bush. Bull. Math. Biol. 59, 263–294 (1997)

    Article  MATH  Google Scholar 

  24. Couteron, P., Lejeune, O.: Periodic spotted patterns in semi–arid vegetation explained by a propagation–inhibition model. J. Ecol. 89, 616–628 (2001)

    Article  Google Scholar 

  25. Barbier, N., Couteron, P., Lefever, R., Deblauwe, V., Lejeune, O.: Spatial decoupling of facilitation, competition at the origin of gapped vegetation patterns. Ecology 89, 1521–1531 (2008)

    Article  Google Scholar 

  26. Lefever, R., Barbier, N., Couteron, P., Lejeune, O.: Deeply gapped vegetation patterns: on crown/root allometry, criticality and desertification. J. Theor. Biol. 261, 194–209 (2009)

    Article  Google Scholar 

  27. Deblauwe, V.: Modulation des structures de végétation auto–organisées en milieu aride / Self–organized vegetation pattern modulation in arid climates. PhD thesis, Université Libre de Bruxelles (2010)

    Google Scholar 

  28. Tongway, D.J., Ludwig, J.A.: Theories on the origins, maintainance, dynamics, and functioning of banded landscapes. In: Tongway, D.J., Valentin, C., Seghieri, J. (eds.) Banded Vegetation Patterning in Arid and Semi–Arid Environments, pp. 20–31. Springer, New York (2001)

    Chapter  Google Scholar 

  29. Montaña, C., Seghieri, J., Cornet, A.: Vegetation dynamics: recruitment, regeneration in two–phase mosaics. In: Tongway, D.J., Valentin, C., Seghieri, J. (eds.) Banded Vegetation Patterning in Arid and Semi–Arid Environments, pp. 132–145. Springer, New York (2001)

    Chapter  Google Scholar 

  30. Sherratt, J.A., Lord, G.J.: Nonlinear dynamics, pattern bifurcations in a model for vegetation stripes in semi–arid environments. Theor. Pop. Biol. 71, 1–11 (2007)

    Article  MATH  Google Scholar 

  31. Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semi–arid environments II: patterns with the largest possible propagation speeds. Proc. R. Soc. Lond. A 467, 3272–3294 (2011)

    Article  MathSciNet  Google Scholar 

  32. Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation semi–arid environments IV: slowly moving patterns and their stability (submitted)

    Google Scholar 

  33. Doedel, E.J.: AUTO, a program for the automatic bifurcation analysis of autonomous systems. Cong. Numer. 30, 265–384 (1981)

    MathSciNet  Google Scholar 

  34. Sherratt, J.A.: An analysis of vegetation stripe formation in semi–arid landscapes. J. Math. Biol. 51, 183–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semi–arid environments I. Nonlinearity 23, 2657–2675 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semi–arid environments III: the transition between homoclinic solutions (submitted)

    Google Scholar 

  37. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  38. Lejeune, O., Tlidi, M., Couteron, P.: Localized vegetation patches: a self–organized response to resource scarcity. Phys. Rev. E 66, 010901 (2002)

    Article  Google Scholar 

  39. Ben Wu, X., Archer, S.R.: Scale–dependent influence of topography–based hydrologic features on patterns of woody plant encroachment in savanna landscapes. Landscape Ecol. 20, 733–742 (2005)

    Article  Google Scholar 

  40. Belyea, L.R.: Climatic and topographic limits to the abundance of bog pools. Hydrological Processes 21, 675–687 (2007)

    Article  Google Scholar 

  41. Eppinga, M.B., de Ruiter, P.C., Wassen, M.J., Rietkerk, M.: Nutrients and hydrology indicate the driving mechanisms of peatland surface patterning. Am. Nat. 173, 803–818 (2009)

    Article  Google Scholar 

  42. van de Koppel, J., Rietkerk, M., Dankers, N., Herman, P.M.J.: Scale–dependent feedback and regular spatial patterns in young mussel beds. Am. Nat. 165, E66–E77 (2005)

    Article  Google Scholar 

  43. van de Koppel, J., Gascoigne, J.C., Theraulaz, G., Rietkerk, M., Mooij, W.M., Herman, P.M.J.: Experimental evidence for spatial self–organization and its emergent effects in mussel bed ecosystems. Science 322, 739–742 (2008)

    Article  Google Scholar 

  44. Hiemstra, C.A., Liston, G.E., Reiners, W.A.: Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modelling 197, 35–51 (2006)

    Article  Google Scholar 

  45. Bekker, M.F., Clark, J.T., Jackson, M.W.: Landscape metrics indicate differences in patterns and dominant controls of ribbon forests in the Rocky Mountains, USA. Applied Vegetation Science 12, 237–249 (2009)

    Article  Google Scholar 

  46. Borthagaray, A.I., Fuentes, M.A., Marquet, P.A.: Vegetation pattern formation in a fog–dependent ecosystem. J. Theor. Biol. 265, 18–26 (2010)

    Article  Google Scholar 

  47. Wang, R.H., Liu, Q.X., Sun, G.Q., Jin, Z., van de Koppel, J.: Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds. J. R. Soc. Interface 6, 705–718 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sherratt, J.A. (2012). Turing Patterns in Deserts. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics