Skip to main content

The Byzantine Brides Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7288))

Abstract

We investigate the hardness of establishing as many stable marriages (that is, marriages that last forever) in a population whose memory is placed in some arbitrary state with respect to the considered problem, and where traitors try to jeopardize the whole process by behaving in a harmful manner. On the negative side, we demonstrate that no solution that is completely insensitive to traitors can exist, and we propose a protocol for the problem that is optimal with respect to the traitor containment radius.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbaro, N.: Diary of the Siege of Constantinople. Translation by John Melville-Jones, New York (1453)

    Google Scholar 

  2. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  5. Dolev, S.: Self-stabilization. MIT Press (March 2000)

    Google Scholar 

  6. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms and Data Structures. In: Algorithms and Theory of Computation Handbook, 2nd edn., pp. 26.1–26.45. CRC Press, Taylor & Francis Group (November 2009)

    Google Scholar 

  7. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Symposium on Reliable Distributed Systems (SRDS 2002), pp. 22–29. IEEE Computer Society (2002)

    Google Scholar 

  8. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Inf. Process. Lett. 43(2), 77–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6), 271–272 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks. In: IPDPS, p. 162 (2003)

    Google Scholar 

  11. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal matching algorithm. Theoretical Computer Science (TCS) 410(14), 1336–1345 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghosh, S., Gupta, A., Hakan, M., Sriram, K., Pemmaraju, V.: Self-stabilizing dynamic programming algorithms on trees. In: Proceedings of the Second Workshop on Self-Stabilizing Systems, pp. 11.1–11.15 (1995)

    Google Scholar 

  13. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree network. In: ICDCS, pp. 20–26 (2003)

    Google Scholar 

  14. Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm for 1-maximal matching in trees. In: PDPTA, pp. 797–803 (2006)

    Google Scholar 

  15. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A self-stabilizing 2/3-approximation algorithm for the maximum matching problem. Theoretical Computer Science (TCS) 412(40), 5515–5526 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of byzantine faults. J. ACM 51(5), 780–799 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Daliot, A., Dolev, D.: Self-stabilization of Byzantine Protocols. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 48–67. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with unbounded byzantine faults. International Journal of Principles and Applications of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

    Google Scholar 

  19. Dubois, S., Masuzawa, T., Tixeuil, S.: The Impact of Topology on Byzantine Containment in Stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Dubois, S., Masuzawa, T., Tixeuil, S.: On Byzantine Containment Properties of the min + 1 Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubois, S., Tixeuil, S., Zhu, N. (2012). The Byzantine Brides Problem. In: Kranakis, E., Krizanc, D., Luccio, F. (eds) Fun with Algorithms. FUN 2012. Lecture Notes in Computer Science, vol 7288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30347-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30347-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30346-3

  • Online ISBN: 978-3-642-30347-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics