Skip to main content

Listeria monocytogenes and the Genus Listeria

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The genus Listeria contains ten species of Gram-positive bacteria, L. monocytogenes, L. fleischmannii, L. grayi, L. innocua, L. ivanovii, L. marthii, L. rocourtiae, L. seeligeri, L. weihenstephanensis, and L. welshimeri, and has been classified (along with members of the genus Brochothrix: B. thermosphacta and B. campestris) within the family Listeriaceae. Members of this family produce short rods that may form filaments. Cells stain Gram-positive, and the cell walls contain meso-diaminopimelic acid. The major lipid components include saturated straight-chain and methyl-branched fatty acids. Endospores are not produced; menaquinones are the sole respiratory quinones. Growth is aerobic and facultatively anaerobic; glucose is fermented to lactate and other products.

L. monocytogenes (and to a lesser extent L. ivanovii) which are pathogenic to humans and a range of other animals, and the disease is primarily transmitted by consumption of contaminated food or feed. Human listeriosis is an opportunistic infection which most often affects those with severe underlying illness, the elderly, pregnant women, and both unborn and newly delivered infants. The reported incidence of human listeriosis varies between countries from <1 to >10 cases per million of the total population. Because of the severity of infection, listeriosis is one of the major causes of death from a preventable foodborne illness. Studies of the molecular biology of L. monocytogenes have identified a number of virulence factors that promote uptake into nonprofessional phagocytic cells and the process of movement from cell-to-cell by recruiting host cell proteins and remodeling the host cell cytoskeleton. This has made L. monocytogenes also of interest both as a tool to help understand eukaryotic cell biology and as a potential therapeutic agent for intracellular delivery of drugs and as a cancer vaccine. The presence of L. monocytogenes remains a major challenge for the food industry. Its psychrotrophic nature means that it can grow at or below refrigeration temperatures and it is also relatively tolerant of high solute concentrations, resists desiccation, and therefore can overcome mild food preservation techniques. L. monocytogenes is able to form biofilms and can colonize food processing equipment and environments, leading to cross-contamination of processed foods. Hence it is of particular concern in ready-to-eat foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akya A, Pointon A, Thomas C (2009) Viability of Listeria monocytogenes in co-culture with Acanthamoeba spp. FEMS Microbiol Ecol 70:20–29

    PubMed  CAS  Google Scholar 

  • Anacarso I, de Niederhausern S, Messi P, Guerrieri E, Iseppi R, Sabia C, Bondi M (2012) Acanthamoeba polyphaga, a potential environmental vector for the transmission of food-borne and opportunistic pathogens. J Basic Microbiol 52:261–268

    PubMed  Google Scholar 

  • Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anon (1954) Opinion 12, conservation of Listeria Pirie 1940 as a generic name in bacteriology. Int Bull Bacteriol Nomencl Taxon 4:150–151

    Google Scholar 

  • Audurier A, Rocourt J, Courtieu AL (1977) Isolement et characterisation de bacteriophages de Listeria monocytogenes. Ann Microbiol 128A:185–198

    Google Scholar 

  • Azizoglu RO, Kathariou S (2010a) Inactivation of a cold-induced putative RNA helicase gene of Listeria monocytogenes is accompanied by failure to grow at low temperatures but does not affect freeze-thaw tolerance. J Food Prot 73:1474–1479

    PubMed  CAS  Google Scholar 

  • Azizoglu RO, Kathariou S (2010b) Temperature-dependent requirement for catalase in aerobic growth of Listeria monocytogenes F2365. Appl Environ Microbiol 76:6998–7003

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barbuddhe S, Hain T, Chakraborty T (2008) Comparative genomics and evolution of virulence. In: Lio D (ed) Handbook of Listeria monocytogenes. CRC Press, Baco Raton, pp 311–335

    Google Scholar 

  • Belessi C-EA, Gounadaki AS, Psomas AN, Skandamis PN (2011) Efficiency of different sanitation methods on Listeria monocytogenes biofilms formed under various environmental conditions. Int J Food Microbiol 145:S46–S52

    PubMed  Google Scholar 

  • Bertsch D, Rau J, Eugster MR, Haug MC, Lawson PA, Lacroix C, Meile L (2013) Listeria fleischmannii sp. nov., isolated from cheese. Int J Syst Evol Microbiol 63:526–532

    Google Scholar 

  • Bigot B, Lee WJ, McIntyre L, Wilson T, Hudson JA, Billington C, Heinemann JA (2011) Listeria fleischmannii sp. nov., isolated from cheese. Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol 28:1448–1452

    PubMed  CAS  Google Scholar 

  • Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot JP, Giovannini M, Coyle A, Bertin J, Namane A, Rousselle JC, Cayet N, Prévost MC, Balloy V, Chignard M, Philpott DJ, Cossart P, Girardin SE (2007) A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci USA 104:997–1002

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buchrieser C (2007) Biodiversity of the species Listeria monocytogenes and the genus Listeria. Microbes Infect 9:1147–1155

    PubMed  CAS  Google Scholar 

  • Buchrieser C, Rusniok C, Kunst F, Cossart P, Glaser P, The Listeria Consortium (2003) Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol Med Microbiol 35:207–213

    PubMed  CAS  Google Scholar 

  • Buchrieser C, Rusniok C, Garrido P, Hain T, Scortti M, Lampidis R, Karst U, Chakraborty T, Cossart P, Kreft J, Vazquez-Boland JA, Goebel W, Glaser P (2011) Complete genome sequence of the animal pathogen Listeria ivanovii, which provides insights into host specificities and evolution of the Genus Listeria. J Bacteriol 193:6787–6788

    PubMed  CAS  PubMed Central  Google Scholar 

  • Call DR, Borucki MK, Besser TE (2003) Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes. J Clin Microbiol 41:632–639

    PubMed  CAS  PubMed Central  Google Scholar 

  • Caly D, Takilt D, Lebret V, Tresse O (2009) Sodium chloride affects Listeria monocytogenes adhesion to polystyrene and stainless steel by regulating flagella expression. Lett Appl Microbiol 49:751–756

    PubMed  CAS  Google Scholar 

  • Cao M, Pavinski Bitar A, Marquis H (2007) A mariner-based transposition system for Listeria monocytogenes. Appl Environ Microbiol 73:2758–2761

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43:301–312

    PubMed  CAS  Google Scholar 

  • Carpentier B, Cerf O (2011) Review – persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145:1–8

    PubMed  Google Scholar 

  • Chan YC, Wiedmann M (2009) Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Crit Rev Food Sci Nutr 49:237–253

    PubMed  CAS  Google Scholar 

  • Chang Y, Gu W, Fischer N, McLandsborough L (2012) Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis. Appl Microbiol Biotechnol 93:2051–2062

    PubMed  CAS  Google Scholar 

  • Charpentier E, Courvalin P (1999) Antibiotic resistance in Listeria spp. Antimicrob Agents Chemother 43:2103–2108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine M-N, Hebraud M (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68:728–737

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Y, Knabel S (2008) Strain typing. In: Liu D (ed) Handbook of Listeria monocytogenes. CRC Press, Boca Raton, pp 203–240

    Google Scholar 

  • Christie R, Atkins NE, Munch-Peterson E (1944) A note on a lytic phenomenon shown by group B streptococci. Aust J Exp Biol Med Sci 22:197–200

    Google Scholar 

  • Collins MD, Jones D (1981) The distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed  CAS  PubMed Central  Google Scholar 

  • Collins MD, Jones D, Goodfellow M, Minnikin DE (1979) Isoprenoid quinone composition as a guide to the classification of Listeria, Brochothrix, Erysipelothrix and Caryophanon. J Gen Microbiol 111:453–457

    PubMed  CAS  Google Scholar 

  • Collins MD, Wallbanks S, Lane DJ, Shah J, Nietupski R, Smida J, Dorsch M, Stackebrandt E (1991) Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:240–246

    PubMed  CAS  Google Scholar 

  • Collins B, Curtis N, Cotter PD, Hill C, Ross RP (2010) The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various beta-lactam antibiotics. Antimicrob Agents Chemother 54:4416–4423

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cossart P (2011) Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci USA 108:19484–19491

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453

    PubMed  CAS  PubMed Central  Google Scholar 

  • Curtis GD, Lee WH (1995) Culture media and methods for the isolation of Listeria monocytogenes. Int J Food Microbiol 26:1–13

    PubMed  CAS  Google Scholar 

  • Daneshvar MI, Brooks JB, Malcolm GB, Pine L (1989) Analyses of fermentation products of Listeria species by frequency-pulsed electron-capture gas–liquid chromatography. Can J Microbiol 35:786–793

    PubMed  CAS  Google Scholar 

  • Dell’Era S, Buchrieser C, Couvé E, Schnell B, Briers Y, Schuppler M, Loessner MJ (2009) Listeria monocytogenes L-forms respond to cell wall deficiency by modifying gene expression and the mode of division. Mol Microbiol 73:306–322

    PubMed  Google Scholar 

  • den Bakker HC, Cummings CA, Ferreira V, Vatta P, Orsi RH, Degoricija L, Barker M, Petrauskene O, Furtado MR, Wiedmann M (2010) Comparative genomics of the bacterial genus Listeria: genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics 11:688

    Google Scholar 

  • Domenichini G, Fogliazza D, Pagani M (1992) Studies on the transmission of Listeria by means of arthropods. Ital J Food Sci 4:269–278

    Google Scholar 

  • Domínguez-Bernal G, Müller-Altrock S, González-Zorn B, Scortti M, Herrmann P, Monzó HJ, Lacharme L, Kreft J, Vázquez-Boland JA (2006) A spontaneous genomic deletion in Listeria ivanovii identifies LIPI-2, a species-specific pathogenicity island encoding sphingomyelinase and numerous internalins. Mol Microbiol 59:415–432

    PubMed  Google Scholar 

  • Dons L, Rasmussen OF, Olsen JE (1992) Cloning and characterization of a gene encoding flagellin of Listeria monocytogenes. Mol Microbiol 6:2919–2929

    PubMed  CAS  Google Scholar 

  • Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C (2004a) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72:1072–1083

    PubMed  CAS  PubMed Central  Google Scholar 

  • Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P (2004b) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42:3819–3822

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dowd GC, Joyce SA, Hill C, Gahan CG (2011) Investigation of the mechanisms by which Listeria monocytogenes grows in porcine gallbladder bile. Infect Immun 79:369–379

    PubMed  CAS  PubMed Central  Google Scholar 

  • EFSA Panel on Biological Hazards (BIOHAZ) (2012) Scientific Opinion on the evaluation of the safety and efficacy of ListexTM P100 for the removal of Listeria monocytogenes surface contamination of raw fish. EFSA J 10:2615. [43 pp]

    Google Scholar 

  • Errebo Larsen H, Seeliger HPR (1966) A mannitol fermenting Listeria: Listeria grayi sp.n. In: Proceedings of the 3rd international symposium on Listeriosis, Biltoven, pp 35–39

    Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feresu SB, Jones D (1988) Taxonomic studies on Brochothrix, Erysipelothrix, Listeria and atypical lactobacilli. J Gen Microbiol 134:1165–1183

    PubMed  CAS  Google Scholar 

  • Fiedler F (1988) Biochemistry of the cell surface of Listeria strains: a locating general view. Infection 16:S92–S97

    PubMed  CAS  Google Scholar 

  • Fiedler F, Ruhland GJ (1987) Structure of Listeria monocytogenes cell walls. Bull Inst Pasteur 85:287–300

    CAS  Google Scholar 

  • Fiedler F, Seger J (1983) The murein types of Listeria grayi, Listeria murrayi and Listeria denitrificans. Syst Appl Microbiol 4:444–450

    PubMed  CAS  Google Scholar 

  • Fiedler F, Seger J, Shrettenbrunner A, Seeliger HPR (1984) The biochemistry of murein and cell wall teichoic acids in the genus Listeria. Syst Appl Micobiol 5:360–376

    CAS  Google Scholar 

  • Fischer W, Leopold K (1999) Polar lipids of four Listeria species containing l-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. Int J Syst Bacteriol 49:653–662

    PubMed  CAS  Google Scholar 

  • Fistrovici E, Collins-Thompson CL (1990) Use of plasmid profiles and restriction endonuclease digests in environmental studies of Listeria spp. from raw milk. Int J Food Microbiol 10:43–50

    PubMed  CAS  Google Scholar 

  • Forrester S, Milillo SR, Hoose WA, Wiedmann M, Schwab U (2007) Evaluation of the pathogenicity of Listeria spp. in Caenorhabditis elegans. Foodborne Pathog Dis 4:67–73

    PubMed  Google Scholar 

  • Friedman ME, Alm WL (1962) Effect of glucose concentration in the growth medium on some metabolic activities of Listeria monocytogenes. J Bacteriol 84:375–376

    PubMed  CAS  PubMed Central  Google Scholar 

  • Friedman ME, Roessler WG (1961) Growth of Listeria monocytogenes in defined media. J Bacteriol 82:528–537

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    PubMed  Google Scholar 

  • Gerner-Smidt P, Hise K, Kincaid J, Hunter S, Rolando S, Hyytiä-Trees E, Ribot EM, Swaminathan B (2006) PulseNet USA: a five-year update. PulseNet taskforce. Foodborne Pathog Dis 3:9–19

    PubMed  CAS  Google Scholar 

  • Ghosh BK, Murray RG (1967) Fine structure of Listeria monocytogenes in relation to protoplast formation. J Bacteriol 93:411–426

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gilot P, Content J (2002) Specific identification of Listeria welshimeri and Listeria monocytogenes by PCR assays targeting a gene encoding a Fibronectin-Binding Protein. J Clin Microbiol 40:698–703

    PubMed  CAS  PubMed Central  Google Scholar 

  • Girardin H, Morris CE, Albagnac C, Dreux N, Glaux C, Nguyen-The C (2005) Behaviour of the pathogen surrogates Listeria innocua and Clostridium sporogenes during production of parsley in fields fertilized with contaminated amendments. FEMS Microbiol Ecol 54:287–295

    PubMed  CAS  Google Scholar 

  • Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couvé E, de Daruvar A, Dehoux P, Domann E, Domínguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, García-del Portillo F, Garrido P, Gautier L, Goebel W, Gómez-López N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, MaduenoE, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Pérez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vázquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852

    PubMed  CAS  Google Scholar 

  • Graham TA, Golsteyn-Thomas EJ, Thomas JE, Gannon VP (1997) Inter- and intraspecies comparison of the 16S-23S rRNA operon intergenic spacer regions of six Listeria spp. Int J Syst Bacteriol 4(7):863–869

    Google Scholar 

  • Granier SA, Moubareck C, Colaneri C, Lemire A, Roussel S, Dao TT, Courvalin P, Brisabois A (2011) Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl Environ Microbiol 77:2788–2790

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gravekamp C, Paterson Y (2010) Harnessing Listeria monocytogenes to target tumors. Cancer Biol Ther 9:257–265

    PubMed  CAS  Google Scholar 

  • Graves LM, Swaminathan B (2001) PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int J Food Microbiol 65:55–62

    PubMed  CAS  Google Scholar 

  • Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED, Milillo SR, den Bakker HC, Wiedmann M, Swaminathan B, Sauders BD (2010) Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol 60:1280–1288

    PubMed  CAS  Google Scholar 

  • Gründling A, Burrack LS, Bouwer HG, Higgins DE (2004) Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci USA 101:12318–12323

    PubMed  PubMed Central  Google Scholar 

  • Guenther S, Huwyler D, Richard S, Loessner MJ (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75:93–100

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gueriri I, Cyncynatus C, Dubrac S, Arana AT, Dussurget O, Msadek T (2008) The DegU orphan response regulator of Listeria monocytogenes autorepresses its own synthesis and is required for bacterial motility, virulence and biofilm formation. Microbiology 154:2251–2264

    PubMed  CAS  Google Scholar 

  • Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y (2001) Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167:6471–6479

    PubMed  CAS  Google Scholar 

  • Hadorn K, Hächler H, Schaffner A, Kayser FH (1993) Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. Eur J Clin Microbiol 12:928–937

    CAS  Google Scholar 

  • Hain T, Steinweg C, Chakraborty T (2006) Comparative and functional genomics of Listeria spp. J Biotechnol 126:37–51

    PubMed  CAS  Google Scholar 

  • Harmsen M, Lappann M, Knochel S, Molin S (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76:2271–2279

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heger M (2012) In pilot project, FDA places MiSeqs in state and federal labs to track food-borne pathogens. Genomeweb Oct 17 available from http://www.genomeweb.com/sequencing/pilot-project-fda-places-miseqs-state-and-federal-labs-track-food-borne-pathogen. Accessed Jan 2013

  • Hein I, Klein D, Lehnera A, Bubert A, Brandl E, Wagner M (2001) Detection and quantification of the iap gene of Listeria monocytogenes and Listeria innocua by a new real-time quantitative PCR assay. Res Microbiol 15:237–246

    Google Scholar 

  • Hether NW, Campbell PA, Baker LA, Jackson LL (1983) Chemical composition and biological functions of Listeria monocytogenes cell wall preparations. Infect Immun 39:1114–1121

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hiltbold EM, Ziegler HK (1993) Mechanisms of processing and presentation of the antigens of Listeria monocytogenes. Infect Agents Dis 2:314–323

    PubMed  CAS  Google Scholar 

  • Holck A, Berg J (2009) Inhibition of Listeria monocytogenes in cooked ham by virulent bacteriophages and protective cultures. Appl Environ Microbiol 75:6944–6946

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huws SA, Morley RJ, Jones MV, Brown MR, Smith AW (2008) Interactions of some common pathogenic bacteria with Acanthamoeba polyphaga. FEMS Microbiol Lett 282:258–265

    PubMed  CAS  Google Scholar 

  • Isaacs D, Liberman MM (1981) Babies cross-infected with Listeria monocytogenes. Lancet ii:940

    Google Scholar 

  • Jablasone J, Warriner K, Griffiths M (2005) Interactions of Escherichia coli O157:H7. Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system. Int J Food Microbiol 99:7–18

    PubMed  Google Scholar 

  • Jadhav S, Bhave M, Palombo EA (2012) Methods used for the detection and subtyping of Listeria monocytogenes. J Microbiol Methods 88:327–341

    PubMed  CAS  Google Scholar 

  • Johnson J, Jinneman K, Stelma G, Smith BG, Lye D, Messer J, Ulaszek J, Evsen L, Gendel S, Bennett RW, Swaminathan B, Pruckler J, Steigerwalt A, Kathariou S, Yildirim S, Volokhov D, Rasooly A, Chizhikov V, Wiedmann M, Fortes E, Duvall RE, Hitchins AD (2004) Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. Appl Environ Microbiol 70:4256–4266

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones D, Collins MD, Goodfellow M, Minnikin DE (1979) Chemical studies in the classification of the genus Listeria and possibly related bacteria. In: Ivanov I (ed) Problems of Listeriosis. National Agroindustrial Union, Centre for Scientific Studies, Sofia, pp 17–24

    Google Scholar 

  • Jones CE, Shama G, Andrews PW, Roberts IS, Jones D (1995) Comparative study of the growth of Listeria monocytogenes in defined media and demonstration of growth in continuous culture. J Appl Bacteriol 78:66–70

    PubMed  CAS  Google Scholar 

  • Kalmokoff ML, Banerjee SK, Cyr T, Hefford MA, Gleeson T (2001) Identification of a new plasmid-encoded sec-dependent bacteriocin produced by Listeria innocua 743. Appl Environ Microbiol 67:4041–4047

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kamisango K, Saiki I, Tanio Y, Okumura H, Araki Y, Sekikawa I, Azuma I, Yamamura Y (1982) Structures and biological activities of peptidoglycans of Listeria monocytogenes and Propionibacterium acnes. J Biochem (Tokyo) 92:23–33

    CAS  Google Scholar 

  • Kamisango K, Fujii H, Okumura H, Saiki I, Araki Y, Yamamura Y, Azuma I (1983) Structural and immunochemical studies of teichoic acid of Listeria monocytogenes. J Biochem (Tokyo) 93:1401–1409

    CAS  Google Scholar 

  • Kamp HD, Higgins DE (2009) Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes. Mol Microbiol 74:421–435

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kämpfer P (1992) Differentiation of Corynebacterium spp., Listeria spp., and related organism by using fluorogenic substrates. J Clin Microbiol 30:1067–1071

    PubMed  PubMed Central  Google Scholar 

  • Kämpfer P, Böttcher S, Dott W, Rüden H (1991) Physiological characterization and identification of Listeria species. Zbl Bakt Int J Med Microbiol 275:423–435

    Google Scholar 

  • Kim JW, Dutta V, Elhanafi D, Lee S, Osborne JA, Kathariou S (2012) A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl Environ Microbiol 78:1995–2004

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klumpp J, Dorscht J, Lurz R, Bielmann R, Wieland M, Zimmer M, Calendar R, Loessner MJ (2008) The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a model for the SPO1-like myoviruses of Gram-positive bacteria. J Bacteriol 190:5753–5765

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kolb-Maurer A, Gentschev I, Fries HW, Fiedler F, Brocker EB, Kampgen E, Goebel W (2000) Listeria monocytogenes-infected human dendritic cells: uptake and host cell response. Infect Immun 68:3680–3688

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kosaric N, Carroll KK (1971) Phospholipids of Listeria monocytogenes. Biochim Biophys Acta 239:428–442

    PubMed  CAS  Google Scholar 

  • Kuenne C, Voget S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T (2010) Comparative analysis of plasmids in the genus Listeria. PLoS One 5(9):e12511

    PubMed  PubMed Central  Google Scholar 

  • Kutter S, Hartmann A, Schmid M (2006) Colonization of barley (Hordeumvulgare) with Salmonella enterica and Listeria spp. FEMS Microbiol Ecol 56:262–271

    PubMed  CAS  Google Scholar 

  • Lang Halter E, Neuhaus K, Scherer S (2013) Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca of a German fresh water pond. Int J Syst Evol Microbiol 63:641–647

    Google Scholar 

  • Larsson S, Cederberg A, Ivarsson S, Svanberg L, Cronberg S (1978) Listeria monocytogenes causing hospital-acquired enterocolitis and meningitis in newborn infants. BMJ 2:473–474

    PubMed  CAS  PubMed Central  Google Scholar 

  • Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S, Nemunaitis J, Sterman DH, Hassan R, Lutz E, Moyer B, Giedlin M, Louis JL, Sugar EA, Pons A, Cox AL, Levine J, Murphy AL, Illei P, Dubensky TW Jr, Eiden JE, Jaffee EM, Laheru DA (2012) A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res 18:858–868

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lebrun M, Loulergue J, Chaslus-Dancla E, Audurier A (1992) Plasmids in Listeria monocytogenes in relation to cadmium resistance. Appl Environ Microbiol 58:3183–3186

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lebrun M, Audurier A, Cossart P (1994a) Plasmid borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. J Bacteriol 176:3040–3048

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lebrun M, Audurier A, Cossart P (1994b) Plasmid borne cadmium resistance genes in Listeria monocytogenes are present on Tn5422, a novel transposon closely related to Tn917. J Bacteriol 176:3049–3061

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leclercq A, Clermont D, Bizet C, Grimont PA, Le Flèche-Matéos A, Roche SM, Buchrieser C, Cadet-Daniel V, Le Monnier A, Lecuit M, Allerberger F (2010) Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol 60:2210–2214

    PubMed  CAS  Google Scholar 

  • Lemon KP, Higgins DE, Kolter R (2007) Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189:4418–4424

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lianou A, Sofos JN (2007) A review of the incidence and transmission of Listeria monocytogenes in ready-to-eat products in retail and food service environments. J Food Prot 70:2172–2198

    PubMed  Google Scholar 

  • Loessner MJ, Krause IB, Henle T, Scherer S (1994) Structural proteins and DNA characteristics of 14 Listeria typing bacteriophages. J Gen Virol 75:701–710

    PubMed  CAS  Google Scholar 

  • Loessner MJ, Inman RB, Lauer P, Calendar R (2000) Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol 35:324–340

    PubMed  CAS  Google Scholar 

  • Low JC, Donachie W (1997) A review of Listeria monocytogenes and listeriosis. Vet J 153:9–29

    PubMed  CAS  Google Scholar 

  • Luber P, Crerar S, Dufour C, Farber J, Datta A, Todd ECD (2011) Controlling Listeria monocytogenes in ready-to-eat foods: working towards global scientific consensus and harmonization – recommendations for improved prevention and control. Food Control 22:1535–1549

    Google Scholar 

  • Lungu B, O’Bryan CA, Muthaiyan A, Milillo SR, Johnson MG, Crandall PG, Ricke SC (2011) Listeria monocytogenes: antibiotic resistance in food production. Foodborne Pathog Dis 8:569–578

    PubMed  Google Scholar 

  • Lusk TS, Ottesen AR, White JR, Allard MW, Brown EW, Kase JA (2012) Characterization of microflora in Latin-style cheeses by next-generation sequencing technology. BMC Microbiol 12:254. doi:10.1186/1471-2180-12-254

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maciag PC, Radulovic S, Rothman J (2009) The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27:3975–3983

    PubMed  CAS  Google Scholar 

  • Mansfield BE, Dionne MS, Schneider DS, Freitag NE (2003) Exploration of host–pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol 5:901–911

    PubMed  CAS  Google Scholar 

  • Mattila M, Lindström M, Somervuo P, Markkula A, Korkeala H (2011) Role of flhA and motA in growth of Listeria monocytogenes at low temperatures. Int J Food Microbiol 148:177–183

    PubMed  CAS  Google Scholar 

  • McLauchlin J, Low JC (1994) Primary cutaneous listeriosis in adults: an occupational disease of veterinarians and farmers. Vet Rec 135:615–617

    PubMed  CAS  Google Scholar 

  • McLauchlin J, Rees CED (2009) Genus Listeria. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The low G + C Gram-positive bacteria. Springer, Dordrecht, pp 244–257

    Google Scholar 

  • Michel B (2005) After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol 3:e255

    PubMed  PubMed Central  Google Scholar 

  • Milillo SR, Badamo JM, Boor KJ, Wiedmann M (2008) Growth and persistence of Listeria monocytogenes isolates on the plant model Arabidopsis thaliana. Food Microbiol 25:698–704

    PubMed  CAS  Google Scholar 

  • Miller IL, Silverman SJ (1959) Glucose metabolism of Listeria monocytogenes. Bacteriolo Proc 103

    Google Scholar 

  • Monk AB, Rees CD, Barrow P, Hagens S, Harper DR (2010) Bacteriophage applications: where are we now? Lett Appl Microbiol 51:363–369

    PubMed  CAS  Google Scholar 

  • Morvan A, Moubareck C, Leclercq A, Hervé-Bazin M, Bremont S, Lecuit M, Courvalin P, Le Monnier A (2010) Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrob Agents Chemother 54:2728–2731

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mukherjee K, Altincicek B, Hain T, Domann E, Vilcinskas A, Chakraborty T (2010) Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol 76:310–317

    PubMed  CAS  PubMed Central  Google Scholar 

  • Murray EGD, Webb RA, Swann MBR (1926) A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). J Pathol Bacteriol 29:407–439

    Google Scholar 

  • Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM (2004) Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32:2386–2395

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nichols DS, Presser KA, Olley J, Ross T, McMeekin TA (2002) Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes. Appl Environ Microbiol 68:2809–2813

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ninet B, Traitler H, Aeschlimann JM, Hormna I, Hartman D, Bille J (1992) Quantitative analysis of cellular fatty acids (CFAs) composition of the seven species of Listeria. Syst Appl Microbiol 15:76–81

    CAS  Google Scholar 

  • Ottaviani F, Ottaviani M, Agosti M (1997) Differential agar medium for Listeria monocytogenes. Ind Aliment 36:888

    Google Scholar 

  • Pava-Ripoll M, Goeriz Pearson RE, Miller AK, Ziobro GC (2012) Prevalence and relative risk of Cronobacter spp., Salmonella spp., and Listeria monocytogenes associated with the body surfaces and guts of individual filth flies. Appl Environ Microbiol 78:7891–7902

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peek R, Reddy KR (2006) FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology 131:1370–1372

    Google Scholar 

  • Peel M, Donachie W, Shaw A (1988a) Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and Western blotting. J Gen Microbiol 134:2171–2178

    PubMed  CAS  Google Scholar 

  • Peel M, Donachie W, Shaw A (1988b) Physical and antigenic heterogeneity in the flagellins of Listeria monocytogenes and L.ivanovii. J Gen Microbiol 134:2593–2598

    PubMed  CAS  Google Scholar 

  • Péréz-Díaz JC, Vicente MF, Baquero F (1982) Plasmids in Listeria. Plasmid 8:112–118

    PubMed  Google Scholar 

  • Phan-Thanh L, Gormon T (1997) A chemically defined minimal medium for the optimal culture of Listeria. Int J Food Microbiol 35:91–95

    PubMed  CAS  Google Scholar 

  • Pine L, Malcolm GB, Brooks JB, Daneshvar MI (1989) Physiological studies on the growth and utilization of sugars by Listeria species. Can J Microbiol 35:245–254

    PubMed  CAS  Google Scholar 

  • Pirie JHH (1927) A new disease of veld rodents, ‘Tiger River Disease.’. Publ S Afr Inst Med Res 3:63–186

    Google Scholar 

  • Pirie JHH (1940a) The genus Listerella, Pirie. Science 91:383

    PubMed  CAS  Google Scholar 

  • Pirie JHH (1940b) Listeria: change of name for a genus of bacteria. Nature 145:264

    Google Scholar 

  • Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL, Courvalin P (1990) Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. Lancet 335:1422–1426

    PubMed  CAS  Google Scholar 

  • Poyart-Salmeron C, Trieu-Cuot P, Carlier C, MacGowan A, McLauchlin J, Courvalin P (1992) Genetic basis of tetracycline resistance in clinical isolates of Listeria monocytogenes. Antimicrob Agents Chemother 36:463–466

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prévot AR (1961) Listeria Traité de Systématique Bactérienne, vol 2. Dunod, Paris, pp 511–512

    Google Scholar 

  • Putt SNH, Shaw APM, Woods AJ, Tyler L, James AD (1988) Veterinary epidemiology and economics in Africa – a manual for use in the design and appraisal of livestock health policy. ILCA, University of Reading, Reading

    Google Scholar 

  • Puttmann M, Ade N, Hof H (1993) Dependence of fatty acid composition of Listeria spp. on growth temperature. Res Microbiol 144:279–283

    PubMed  CAS  Google Scholar 

  • Quentin C, Thibaut MC, Horovitz J, Bebear C (1990) Multiresistant strain of Listeria monocytogenes in septic abortion. Lancet 336:375

    PubMed  CAS  Google Scholar 

  • Radulovic S, Brankovic-Magic M, Malisic E, Jankovic R, Dobricic J, Plesinac-Karapandzic V, Maciag PC, Rothman J (2009) Therapeutic cancer vaccines in cervical cancer: phase I study of Lovaxin-C. J BUON 14:S165–S168

    PubMed  Google Scholar 

  • Rae CS, Geissler A, Adamson PC, Portnoy DA (2011) Mutations of the Listeria monocytogenes peptidoglycan .-Deacetylase and .-Acetylase result in enhanced lysozyme sensitivity, bacteriolysis, and hyperinduction of innate immune pathways. Infect Immun 79:3596–3606

    PubMed  CAS  PubMed Central  Google Scholar 

  • Renier S, Hébraud M, Desvaux M (2011) Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol 13:835–850

    PubMed  CAS  Google Scholar 

  • Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P (2008) Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74:4491–4497

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rocourt J, Catimel B (1985) Charactérisation biochemique des espèces du genre Listeria. Zbl Bakt Hyg A 260:221–231

    CAS  Google Scholar 

  • Rocourt J, Grimont PAD (1983) Listeria welshimeri sp. nov. and Listeria seeligeri sp. nov. Int J Syst Bacteriol 33:866–869

    Google Scholar 

  • Rocourt J, Grimont F, Grimont PAD, Seeliger HPR (1982) DNA relatedness among serovars of Listeria monocytogenes sensu lato. Curr Microbiol 7:383–388

    Google Scholar 

  • Rocourt J, Schrettenbrunner A, Seeliger HPR (1983) Différenciation biochemique des groupes génomiques de Listeria monocytogenes (sensu lato). Ann Microbiol (Paris) 134A:65–71

    CAS  Google Scholar 

  • Rocourt J, Gilmore M, Goebel W, Seeliger HPR (1986) DNA relatedness among Listeria monocytogenes and Listeria innocua bacteriophages. Syst Appl Microbiol 8:42–47

    CAS  Google Scholar 

  • Rocourt J, Wehmeyer U, Stackebrandt E (1987) Transfer of Listeria denitrificans to a new genus Jonesia gen.nov. as Jonesia denitrificans comb.nov. Int J Syst Bacteriol 37:266–270

    Google Scholar 

  • Rocourt J, Boerlin P, Grimont F, Jacquet C, Piffaretti JC (1992) Assignment of Listeria grayi and Listeria murrayi to a single species, Listeria grayi, with a revised description of Listeria grayi. Int J Syst Bacteriol 42:171–174

    PubMed  CAS  Google Scholar 

  • Rossi LPR, Almeida RCC, Lopes LS, Figueiredo ACL, Ramos MPP, Almeida PF (2011) Occurrence of Listeria spp. in Brazilian fresh sausage and control of Listeria monocytogenes using bacteriophage P100. Food Control 22:954–958

    Google Scholar 

  • Sandasi M, Leonard CM, Viljoen AM (2008) The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control 19:1070–1075

    CAS  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schmuki MM, Eme D, Loessner MJ, Klumpp J (2012) Bacteriophage P70: unique morphology and unrelatedness to other Listeria bacteriophages. J Virol 86:13099

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schuchat A, Lizano C, Broome CV, Swaminathan B, Kim C, Winn K (1991) Outbreak of neonatal listeriosis associated with mineral oil. Pediatr Infect Dis J 10:183–189

    PubMed  CAS  Google Scholar 

  • Seeliger HP (1981) Nonpathogenic listeriae: L. innocua sp. n. (Seeliger et Schoofs, 1977). Zentralbl Bakteriol Mikrobiol Hyg [A] 249:487–493

    CAS  Google Scholar 

  • Seeliger HPR, Höhne K (1979) Serotyping of Listeria monocytogenes and related species. In: Bergan T, Norris JR (eds) Methods in microbiology, vol 13. Academic, London, pp 31–49

    Google Scholar 

  • Seeliger HPR, Rocourt J, Schrettenbrunner A, Grimont PAD, Jones D (1984) Listeria ivanovii sp. nov. Int J Syst Bacteriol 34:336–337

    Google Scholar 

  • Seveau S, Pizarro-Cerda J, Cossart P (2007) Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion. Microbes Infect 9:1167–1175

    PubMed  CAS  Google Scholar 

  • Shaw N (1974) Lipid composition as a guide to the classification of bacteria. Adv Appl Microbiol 17:63–108

    PubMed  CAS  Google Scholar 

  • Singh R, Wallecha A (2011) Cancer immunotherapy using recombinant Listeria monocytogenes: transition from bench to clinic. Hum Vaccin 7:497–505

    PubMed  CAS  Google Scholar 

  • Singh AK, Zhang Zhu K, Subramanian C, Li Z, Jayaswal RK, Gatto C, Rock CO, Wilkinson BJ (2009) FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes. FEMS Microbiol Lett 301:188–192

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sleator RD, Hill C (2010) Compatible solutes: a listeria passé-partout? Gut Microbes 1:77–79

    PubMed  PubMed Central  Google Scholar 

  • Somer L, Kashi Y (2003) A PCR method based on 16S rRNA sequence for simultaneous detection of the genus Listeria and the species Listeria monocytogenes in food products. J Food Prot 66:1658–1665

    PubMed  CAS  Google Scholar 

  • Soni KA, Nannapaneni RJ (2010) Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J Food Prot 73:32–38

    PubMed  Google Scholar 

  • Soni KA, Nannapaneni R, Hagens S (2010) Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog Dis 7:427–434

    PubMed  CAS  Google Scholar 

  • Talon R, Grimont PAD, Grimont F, Gasser F, Boeufgras JM (1988) Brochothrix campestris sp. nov. Int J Syst Bacteriol 38:99–102

    CAS  Google Scholar 

  • Tasara T, Stephan R (2006) Cold stress tolerance of Listeria monocytogenes: a review of molecular adaptive mechanisms and food safety implications. J Food Prot 69:1473–1484

    PubMed  CAS  Google Scholar 

  • Threlfall EJ, Skinner JA, McLauchlin J (1998) Antimicrobial resistance in Listeria monocytogenes from humans and food in the UK, 1967–96. Clin Microbiol Infect 4:410–412

    PubMed  Google Scholar 

  • Trémoulet F, Duche O, Namane A, Martinie B, The European Listeria Genome Consortium, Labadie JC (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett 210:25–31

    PubMed  Google Scholar 

  • Trivett TL, Meyer EA (1971) Citrate cycle and related metabolism of Listeria monocytogenes. J Bacteriol 107:770–779

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsakris A, Papa A, Douboyas J, Antoniadis A (1997) Neonatal meningitis due to multi-resistant Listeria monocytogenes. J Antimicrob Chemother 39:553–554

    PubMed  CAS  Google Scholar 

  • Ullmann WW, Cameron JA (1969) Immunochemistry of the cell walls of Listeria monocytogenes. J Bacteriol 98:486–493

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vail KM, McMullen LM, Jones TH (2012) Growth and filamentation of cold-adapted, log-phase Listeria monocytogenes exposed to salt, acid, or alkali stress at 3 °C. J Food Prot 75:2142–2150

    PubMed  CAS  Google Scholar 

  • van Der Veen S, Abee T (2010) Dependence of continuous-flow biofilm formation by Listeria monocytogenes EGD-e on SOS response factor YneA. Appl Environ Microbiol 76:1992–1995

    PubMed  PubMed Central  Google Scholar 

  • van der Veen S, van Schalkwijk S, Molenaar D, de Vos WM, Abee T, Wells-Bennik MH (2010) The SOS response of Listeria monocytogenes is involved in stress resistance and mutagenesis. Microbiology 156:374–384

    PubMed  Google Scholar 

  • Vatanyoopaisarn S, Nazli A, Dodd CE, Rees CE, Waites WM (2000) Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl Environ Microbiol 66:860–863

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty P, Domínguez-Bernal G, Goebel W et al (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640

    PubMed  PubMed Central  Google Scholar 

  • Welshimer HJ, Meredith AL (1971) Listeria murrayi sp. n.: a nitrate-reducing mannitol-fermenting Listeria. Int J Syst Bacteriol 21:3–7

    Google Scholar 

  • Wendlinger G, Loessner MJ, Scherer S (1996) Bacteriophage receptors on Listeria monocytogenes cells are the .-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142:985–992

    PubMed  CAS  Google Scholar 

  • Wernars K, Heuvelman CJ, Chakraborty T, Notermans SH (1991) Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J Appl Bacteriol 70:121–126

    PubMed  CAS  Google Scholar 

  • Wiedmann M, Bruce JL, Keating C, Johnson AE, McDonough PL, Batt CA (1997) Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65:2707–2716

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilkinson BJ, Jones D (1977) A numerical taxonomic survey of Listeria and related bacteria. J Gen Microbiol 98:399–421

    PubMed  CAS  Google Scholar 

  • Wuenscher MD, Kohler S, Bubert A, Gerike U, Goebel W (1993) The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175:3491–3501

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    PubMed  CAS  Google Scholar 

  • Zemansky J, Kline BC, Woodward JJ, Leber JH, Marquis H, Portnoy DA (2009) Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. J Bacteriol 191:3950–3964

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim McLauchlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

McLauchlin, J., Rees, C.E.D., Dodd, C.E.R. (2014). Listeria monocytogenes and the Genus Listeria . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_210

Download citation

Publish with us

Policies and ethics