Skip to main content

Brain Computer Interface for Hand Motor Function Restoration and Rehabilitation

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Long-term disability is often associated with persistent impairment of an upper limb. In this respect, neurological rehabilitation aims to lessen motor impairment and related disability either by restoring functions with the help of assistive devices to aid daily living activities or by applying rehabilitative protocols based on task-specific training and practice to enhance recovery of motor functions. Brain–computer interface technology is a promising rehabilitation device in every such sense. On the one hand, BCI systems can be utilized to bypass central nervous system injury by controlling neuroprosthetics for patient’s arm to manage reach and grasp functional activities in peripersonal space. On the other, BCI technology can encourage motor training and practice by offering an on-line feedback about brain signals associated with mental practice, motor intention and other neural recruitment strategies, and thus helping to guide neuroplasticity associated with post-stroke motor impairment and its recovery. This chapter aims to provide a focused overview of non invasive-BCI technology advancement to serve patients in the field of restoration and recovery of hand motor function impairment accompanying spinal cord injuries and stroke.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alon, G., Levitt, A.F., McCarthy, P.A.: Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil. Neural Repair 21(3), 207–215 (2007). DOI 10.1177/1545968306297871

    Google Scholar 

  2. Alon, G., McBride, K.: Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch. Phys. Med. Rehabil. 84(1), 119–124 (2003). DOI 10.1053/apmr.2003.50073

    Google Scholar 

  3. Anderson, K.D.: Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21(10), 1371–1383 (2004)

    Google Scholar 

  4. Ang, K.K., Guan, C., Chua, K.S., Ang, B.T., Kuah, C., Wang, C., Phua, K.S., Chin, Z.Y., Zhang, H.: Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain–computer interface with robotic feedback. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5549–5552 (2010). DOI 10.1109/IEMB.S.2010.5626782

    Google Scholar 

  5. Ashworth, B.: Preliminary trial of carisoprodol in multiple sclerosis. Practitioner 192, 540–542 (1964)

    Google Scholar 

  6. Backus, D.: Exploring the potential for neural recovery after incomplete tetraplegia through nonsurgical interventions. PM R 2(12 Suppl 2), S279–285 (2010). DOI S1934-1482(10)01196-2

    Google Scholar 

  7. Broetz, D., Braun, C., Weber, C., Soekadar, S.R., Caria, A., Birbaumer, N.: Combination of brain–computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil. Neural Repair 24(7), 674–679 (2010). DOI 1545968310368683

    Google Scholar 

  8. Buch, E., Weber, C., Cohen, L.G., Braun, C., Dimyan, M.A., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39(3), 910–917 (2008). DOI STROKEAHA107.505313

    Google Scholar 

  9. Caria, A., Weber, C., Brotz, D., Ramos, A., Ticini, L.F., Gharabaghi, A., Braun, C., Birbaumer, N.: Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology 48(4), 578–582 (2011). DOI 10.1111/j.1469-8986.2010.01117.x

    Google Scholar 

  10. Cauraugh, J.H., Kim, S.: Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke 33(6), 1589–1594 (2002)

    Google Scholar 

  11. Cauraugh, J.H., Kim, S.B.: Chronic stroke motor recovery: duration of active neuromuscular stimulation. J. Neurol Sci. 215(1–2), 13–19 (2003). DOI S0022510X03001692

    Google Scholar 

  12. Cauraugh, J., Light, K., Kim, S., Thigpen, M., Behrman, A.: Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 31(6), 1360–1364 (2000)

    Google Scholar 

  13. Chae, J., Bethoux, F., Bohine, T., Dobos, L., Davis, T., Friedl, A.: Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke 29(5), 975–979 (1998)

    Google Scholar 

  14. Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., Cherubini, A., Marciani, M.G., Babiloni, F.: Non-invasive brain–computer interface system: towards its application as assistive technology. Brain Res. Bull. 75(6), 796–803 (2008). DOI 10.1016/j.brainresbull.2008.01.007

    Google Scholar 

  15. Crago, P.E., Memberg, W.D., Usey, M.K., Keith, M.W., Kirsch, R.F., Chapman, G.J., Katorgi, M.A., Perreault, E.J.: An elbow extension neuroprosthesis for individuals with tetraplegia. IEEE Trans. Rehabil. Eng. 6(1), 1–6 (1998)

    Google Scholar 

  16. Creasey, G.H., Kilgore, K.L., Brown-Triolo, D.L., Dahlberg, J.E., Peckham, P.H., Keith, M.W.: Reduction of costs of disability using neuroprostheses. Assist. Technol. 12(1), 67–75 (2000). DOI 10.1080/10400435.2000.10132010

    Google Scholar 

  17. Daly, J.J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., Dohring, M.: Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke. J. Neurol Phys. Ther. 33(4), 203–211 (2009). DOI 10.1097/NPT.0b013e3181c1fc0b

    Google Scholar 

  18. Daly, J.J., Wolpaw, J.R.: Brain–computer interfaces in neurological rehabilitation. Lancet Neurol 7(11), 1032–1043 (2008). DOI S1474-4422(08)70223-0

    Google Scholar 

  19. Dietz, V., Curt, A.: Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol. 5(8), 688–694 (2006). DOI S1474-4422(06)70522-1

    Google Scholar 

  20. Dimyan, M.A., Cohen, L.G.: Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7(2), 76–85 (2011). DOI nrneurol.2010.200

    Google Scholar 

  21. Dobkin, B.H.: Training and exercise to drive poststroke recovery. Nat. Clin. Pract. Neurol. 4(2), 76–85 (2008). DOI 10.1038/ncpneuro0709

    Google Scholar 

  22. Dobkin, B.H.: Progressive staging of pilot studies to improve phase III trials for motor interventions. Neurorehabil. Neural Repair 23(3), 197–206 (2009). DOI 10.1177/1545968309331863

    Google Scholar 

  23. Enzinger, C., Ropele, S., Fazekas, F., Loitfelder, M., Gorani, F., Seifert, T., Reiter, G., Neuper, C., Pfurtscheller, G., Müller-Putz, G.: Brain motor system function in a patient with complete spinal cord injury following extensive brain–computer interface training. Exp. Brain Res. 190(2), 215–223 (2008). DOI 10.1007/s00221-008-1465-y

    Google Scholar 

  24. Feigin, V.L., Lawes, C.M., Bennett, D.A., Barker-Collo, S.L., Parag, V.: Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 8(4), 355–369 (2009). DOI 10.1016/S1474-4422(09)70025-0

    Google Scholar 

  25. Francisco, G., Chae, J., Chawla, H., Kirshblum, S., Zorowitz, R., Lewis, G., Pang, S.: Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch. Phys. Med. Rehabil. 79(5), 570–575 (1998). DOI S0003-9993(98)90074-0

    Google Scholar 

  26. Gan, L.S., Prochazka, A.: Properties of the stimulus router system, a novel neural prosthesis. IEEE Trans. Biomed. Eng. 57(2), 450–459 (2010). DOI 10.1109/TBME.2009.2031427

    Google Scholar 

  27. Gollee, H., Volosyak, I., McLachlan, A.J., Hunt, K.J., Graser, A.: An SSVEP-based brain–computer interface for the control of functional electrical stimulation. IEEE Trans. Biomed. Eng. 57(8), 1847–1855 (2010). DOI 10.1109/TBME.2010.2043432

    Google Scholar 

  28. Gomez-Rodriguez, M., Peters, J., Hill, J., Scholkopf, B., Gharabaghi, A., Grosse-Wentrup, M.: Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. J. Neural Eng. 8(3), 036005 v. DOI S1741-2560(11)65262-2

    Google Scholar 

  29. Gordon, T., Mao, J.: Muscle atrophy and procedures for training after spinal cord injury. Phys. Ther. 74(1), 50–60 (1994)

    Google Scholar 

  30. Gu, Y., Dremstrup, K., Farina, D.: Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clin. Neurophysiol. 120(8), 1596–1600 (2009b). DOI S1388-2457(09)00343-5

    Google Scholar 

  31. Halder, S., Agorastos, D., Veit, R., Hammer, E.M., Lee, S., Varkuti, B., Bogdan, M., Rosenstiel, W., Birbaumer, N., Kubler, A.: Neural mechanisms of brain–computer interface control. Neuroimage 55(4), 1779–1790 (2011). DOI 10.1016/j.neuroimage.2011.01.021

    Google Scholar 

  32. Hart, R.L., Kilgore, K.L., Peckham, P.H.: A comparison between control methods for implanted FES hand-grasp systems. IEEE Trans. Rehabil. Eng. 6(2), 208–218 (1998)

    Google Scholar 

  33. Hentz, V.R., Leclercq, C.: (eds.) Surgical Rehabilitation of the Upper Limb in Tetraplegia. W.B. Saunders, London, Edingburgh, New York (2002)

    Google Scholar 

  34. Hoffman, L.R., Field-Fote, E.C.: Functional and corticomotor changes in individuals with tetraplegia following unimanual or bimanual massed practice training with somatosensory stimulation: a pilot study. J. Neurol. Phys. Ther. 34(4), 193–201 (2010). DOI 10.1097/NPT.0b013e3181fbe692

    Google Scholar 

  35. Kapadia, N.M., Zivanovic, V., Furlan, J.C., Craven, B.C., McGillivray, C., Popovic, M.R.: Functional electrical stimulation therapy for grasping in traumatic incomplete spinal cord injury: randomized control trial. Artif. Organs 35(3), 212–216 (2011). DOI 10.1111/j.1525-1594.2011.01216.x

    Google Scholar 

  36. Keith, M.W., Hoyen, H.: Indications and future directions for upper limb neuroprostheses in tetraplegic patients: a review. Hand Clin. 18(3), 519–528, viii (2002)

    Google Scholar 

  37. Kern, H., Carraro, U., Adami, N., Hofer, C., Loefler, S., Vogelauer, M., Mayr, W., Rupp, R., Zampieri, S.: One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurol Res. 32(1), 5–12 (2010a). DOI 10.1179/174313209X385644

    Google Scholar 

  38. Kern, H., Carraro, U., Adami, N., Hofer, C., Loefler, S., Vogelauer, M., Mayr, W., Rupp, R., Zampieri, S.: One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurol. Res. 32(1), 5–12 (2010b). DOI 10.1179/174313209X385644

    Google Scholar 

  39. Kilgore, K.L., Hoyen, H.A., Bryden, A.M., Hart, R.L., Keith, M.W., Peckham, P.H.: An implanted upper-extremity neuroprosthesis using myoelectric control. J. Hand Surg. Am. 33(4), 539–550 (2008). DOI S0363-5023(08)00011-7

    Google Scholar 

  40. Kilgore, K.L., Peckham, P.H., Keith, M.W., Montague, F.W., Hart, R.L., Gazdik, M.M., Bryden, A.M., Snyder, S.A., Stage, T.G.: Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J. Rehabil. Res. Dev. 40(6), 457–468 (2003)

    Google Scholar 

  41. Kilgore, K.L., Scherer, M., Bobblitt, R., Dettloff, J., Dombrowski, D.M., Godbold, N., Jatich, J.W., Morris, R., Penko, J.S., Schremp, E.S., Cash, L.A.: Neuroprosthesis consumers’ forum: consumer priorities for research directions. J. Rehabil. Res. Dev. 38(6), 655–660 (2001)

    Google Scholar 

  42. Kimberley, T.J., Lewis, S.M., Auerbach, E.J., Dorsey, L.L., Lojovich, J.M., Carey, J.R.: Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp. Brain Res. 154(4), 450–460 (2004). DOI 10.1007/s00221-003-1695-y

    Google Scholar 

  43. King, T.I., II: The effect of neuromuscular electrical stimulation in reducing tone. Am. J. Occup. Ther. 50(1), 62–64 (1996)

    Google Scholar 

  44. Kwon, B.K., Okon, E.B., Plunet, W., Baptiste, D., Fouad, K., Hillyer, J., Weaver, L.C., Fehlings, M.G., Tetzlaff, W.: A systematic review of directly applied biologic therapies for acute spinal cord injury. J. Neurotrauma 28(8), 1589–1610 (2011). DOI 10.1089/neu.2009.1150

    Google Scholar 

  45. Kwon, B.K., Sekhon, L.H., Fehlings, M.G.: Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine 35(21 Suppl), S263–S270 (2010). DOI 10.1097/BRS.0b013e3181f3286d

    Google Scholar 

  46. Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009). DOI 10.1016/S1474-4422(09)70150-4

    Google Scholar 

  47. Lauer, R.T., Peckham, P.H., Kilgore, K.L., Heetderks, W.J.: Applications of cortical signals to neuroprosthetic control: a critical review. IEEE Trans. Rehabil. Eng. 8(2), 205–208 (2000)

    Google Scholar 

  48. Lo, A.C., Guarino, P.D., Richards, L.G., Haselkorn, J.K., Wittenberg, G.F., Federman, D.G., Ringer, R.J., Wagner, T.H., Krebs, H.I., Volpe, B.T., Bever, C.T., Jr., Bravata, D.M., Duncan, P.W., Corn, B.H., Maffucci, A.D., Nadeau, S.E., Conroy, S.S., Powell, J.M., Huang, G.D., Peduzzi, P.: Robot-assisted therapy for long-term upper-limb impairment after stroke. New England J. Med. 362(19), 1772–1783 (2010). DOI 10.1056/NEJMoa0911341

    Google Scholar 

  49. Loeb, G.E., Davoodi, R.: The functional reanimation of paralyzed limbs. IEEE Eng. Med. Biol. Mag. 24(5), 45–51 (2005)

    Google Scholar 

  50. Merians, A.S., Poizner, H., Boian, R., Burdea, G., Adamovich, S.: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil. Neural Repair 20(2), 252–267 (2006). DOI 10.1177/1545968306286914

    Google Scholar 

  51. Moss, C.W., Kilgore, K.L., Peckham, P.H.: A novel command signal for motor neuroprosthetic control. Neurorehabil. Neural Repair.25(9), 847–54 (2011). DOI 1545968311410067

    Google Scholar 

  52. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Neuper, C.: Temporal coding of brain patterns for direct limb control in humans. Front. Neurosci. 4, 34 (2010). DOI 10.3389/fnins.2010.00034

    Google Scholar 

  53. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 382(1-2), 169–174 (2005). DOI S0304-3940(05)00300-9

    Google Scholar 

  54. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: Brain–computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation. Biomed. Tech. (Berl.) 51(2), 57–63 (2006). DOI 10.1515/BMT.2006.011

    Google Scholar 

  55. Müller-Putz, G.R., Zimmermann, D., Graimann, B., Nestinger, K., Korisek, G., Pfurtscheller, G.: Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients. Brain Res. 1137(1), 84–91 (2007). DOI S0006-8993(06)03605-5

    Google Scholar 

  56. Müller, G.R., Neuper, C., Rupp, R., Keinrath, C., Gerner, H.J., Pfurtscheller, G.: Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neurosci. Lett. 340(2), 143–147 (2003). DOI S0304394003000193

    Google Scholar 

  57. Mulcahey, M.J., Smith, B.T., Betz, R.R.: Evaluation of the lower motor neuron integrity of upper extremity muscles in high level spinal cord injury. Spinal Cord 37(8), 585–591 (1999)

    Google Scholar 

  58. Muralidharan, A., Chae, J., Taylor, D.M.: Extracting Attempted Hand Movements from EEGs in People with Complete Hand Paralysis Following Stroke. Front. Neurosci. 5, 39 (2011). DOI 10.3389/fnins.2011.00039

    Google Scholar 

  59. Nagaoka, T., Sakatani, K., Awano, T., Yokose, N., Hoshino, T., Murata, Y., Katayama, Y., Ishikawa, A., Eda, H.: Development of a new rehabilitation system based on a brain–computer interface using near-infrared spectroscopy. Adv. Exp. Med. Biol. 662, 497–503 (2010). DOI 10.1007/978-1-4419-1241-1_72

    Google Scholar 

  60. Neumann, N., Hinterberger, T., Kaiser, J., Leins, U., Birbaumer, N., Kubler, A.: Automatic processing of self-regulation of slow cortical potentials: evidence from brain–computer communication in paralysed patients. Clin. Neurophysiol. 115(3), 628–635 (2004). DOI 10.1016/j.clinph.2003.10.030

    Google Scholar 

  61. Neuper, C., Scherer, R., Reiner, M., Pfurtscheller, G.: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25(3), 668–677 (2005). DOI 10.1016/j.cogbrainres.2005.08.014

    Google Scholar 

  62. Nilsen, D.M., Gillen, G., Gordon, A.M.: Use of mental practice to improve upper-limb recovery after stroke: a systematic review. Am. J. Occup. Ther. 64(5), 695–708 (2010)

    Google Scholar 

  63. NSCISC.: The 2006 annual statistical report for the model spinal cord injury care systems. National SCI Statistical Center (2006)

    Google Scholar 

  64. Ortner, R., Allison, B.Z., Korisek, G., Gaggl, H., Pfurtscheller, G.: An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 19(1), 1–5 (2011). DOI 10.1109/TNSRE.2010.2076364

    Google Scholar 

  65. Ouzký M.: Towards concerted efforts for treating and curing spinal cord injury (2002), report of the Social, Health and Family Affairs Committee of the Council of Europe, Doc. 9401, available under http://assembly.coe.int/documents/workingdocs/doc02/edoc9401.htm http://assembly.coe.int/documents/workingdocs/doc02/edoc9401.htm (last access 3rd of July 2012)

  66. Patil, P.G., Turner, D.A.: The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics 5(1), 137–146 (2008). DOI 10.1016/j.nurt.2007.11.002

    Google Scholar 

  67. Peckham, P.H., Keith, M.W., Kilgore, K.L., Grill, J.H., Wuolle, K.S., Thrope, G.B., Gorman, P., Hobby, J., Mulcahey, M.J., Carroll, S., Hentz, V.R., Wiegner, A.: Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch. Phys. Med. Rehabil. 82(10), 1380–1388 (2001). DOI S0003-9993(01)45286-5

    Google Scholar 

  68. Pfurtscheller, G., Linortner, P., Winkler, R., Korisek, G., Müller-Putz, G.: Discrimination of motor imagery-induced EEG patterns in patients with complete spinal cord injury. Comput. Intell. Neurosci., Article ID 104180 (2009). DOI 10.1155/2009/104180

    Google Scholar 

  69. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Google Scholar 

  70. Pfurtscheller, G., Müller, G.R., Pfurtscheller, J., Gerner, H.J., Rupp, R.: ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci. Lett. 351(1), 33–36 (2003a). DOI S0304394003009479

    Google Scholar 

  71. Pfurtscheller, G., Neuper, C., Muller, G.R., Obermaier, B., Krausz, G., Schlogl, A., Scherer, R., Graimann, B., Keinrath, C., Skliris, D., Wortz, M., Supp, G., Schrank, C.: Graz-BCI: state of the art and clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 177–180 (2003b). DOI 10.1109/TNSRE.2003.814454

    Google Scholar 

  72. Pichiorri, F., Cincotti, F., de Vico Fallani, F., Pisotta, I., Morone, G., Molinari, M., Mattia, D.: Towards a brain computer Interface-based rehabilitation: from bench to bedside.. 5th International BCI Conference Proceedings, Graz, Austria (2011a)

    Google Scholar 

  73. Pichiorri, F., De Vico Fallani, F., Cincotti, F., Babiloni, F., Molinari, M., Kleih, S.C., Neuper, C., Kubler, A., Mattia, D.: Sensorimotor rhythm-based brain–computer interface training: the impact on motor cortical responsiveness. J. Neural Eng. 8(2), 025020 (2011b). DOI S1741-2560(11)66162-9

    Google Scholar 

  74. Pomeroy, V.M., King, L., Pollock, A., Baily-Hallam, A., Langhorne, P.: Electrostimulation for promoting recovery of movement or functional ability after stroke. Systematic Review and Meta-Analysis Stroke. 2006; 37: 2441-2442. Cochrane Database Syst. Rev. (2), CD003241 (2006). DOI 10.1002/14651858.CD003241.pub2

    Google Scholar 

  75. Popovic, D., Stojanovic, A., Pjanovic, A., Radosavljevic, S., Popovic, M., Jovic, S., Vulovic, D.: Clinical evaluation of the bionic glove. Arch. Phys. Med. Rehabil. 80(3), 299–304 (1999). DOI S0003-9993(99)90141-7

    Google Scholar 

  76. Popovic, M.B., Popovic, D.B., Sinkjaer, T., Stefanovic, A., Schwirtlich, L.: Clinical evaluation of Functional Electrical Therapy in acute hemiplegic subjects. J. Rehabil. Res. Dev. 40(5), 443–453 (2003)

    Google Scholar 

  77. Popovic, M.R., Popovic, D.B., Keller, T.: Neuroprostheses for grasping. Neurol. Res. 24(5), 443–452 (2002a)

    Google Scholar 

  78. Popovic, M.R., Thrasher, T.A., Adams, M.E., Takes, V., Zivanovic, V., Tonack, M.I.: Functional electrical therapy: retraining grasping in spinal cord injury. Spinal Cord 44(3), 143–151 (2006). DOI 3101822

    Google Scholar 

  79. Powell, J., Pandyan, A.D., Granat, M., Cameron, M., Stott, D.J.: Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke 30(7), 1384–1389 (1999)

    Google Scholar 

  80. Prasad, G., Herman, P., Coyle, D., McDonough, S., Crosbie, J.: Applying a brain–computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil. 7, 60 (2010). DOI 1743-0003-7-60

    Google Scholar 

  81. Rocon, E., Gallego, J.A., Barrios, L., Victoria, A.R., Ibanez, J., Farina, D., Negro, F., Dideriksen, J.L., Conforto, S., D’Alessio, T., Severini, G., Belda-Lois, J.M., Popovic, L.Z., Grimaldi, G., Manto, M., Pons, J.L.: Multimodal BCI-mediated FES suppression of pathological tremor. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 3337–3340 (2010). DOI 10.1109/IEMBS.2010.5627914

    Google Scholar 

  82. Rupp, R., Gerner, H.J.: Neuroprosthetics of the upper extremity–clinical application in spinal cord injury and challenges for the future. Acta. Neurochir. Suppl. 97(Pt 1), 419–426 (2007)

    Google Scholar 

  83. Rupp, R., Müller-Putz, G.R., Pfurtscheller, G., Gerner, H.J., Vossius, G.: Evaluation of control methods for grasp neuroprostheses based on residual movements, myoelectrical activity and cortical signals. Biomed. Tech. (Berl.) 53(Suppl. 1), 2 (2008)

    Google Scholar 

  84. Schill, O., Wiegand, R., Schmitz, B., Matthies, R., Eck, U., Pylatiuk, C., Reischl, M., Schulz, S., Rupp, R.: OrthoJacket: an active FES-hybrid orthosis for the paralysed upper extremity. Biomed. Tech. (Berl.) 56(1), 35–44 (2011). DOI 10.1515/BMT.2010.056

    Google Scholar 

  85. Smith, B., Peckham, P.H., Keith, M.W., Roscoe, D.D.: An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle. IEEE Trans. Biomed. Eng. 34(7), 499–508 (1987)

    Google Scholar 

  86. Snoek, G.J., MJ, I.J., Hermens, H.J., Maxwell, D., Biering-Sorensen, F.: Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord 42(9), 526–532 (2004). DOI 10.1038/sj.sc.3101638

    Google Scholar 

  87. Stefan, K., Kunesch, E., Cohen, L.G., Benecke, R., Classen, J.: Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123 (Pt 3), 572–584 (2000)

    Google Scholar 

  88. Tator, C.H.: Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59(5), 957–982; discussion 982–957 (2006). DOI 10.1227/01.NEU.0000245591.16087.89

    Google Scholar 

  89. Tavella, M., Leeb, R., Rupp, R., Millan del, J.R.: Towards natural non-invasive hand neuroprostheses for daily living. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 126–129 (2010). DOI 10.1109/IEMBS.2010.5627178

    Google Scholar 

  90. Thrasher, T.A., Popovic, M.R.: Functional electrical stimulation of walking: function, exercise and rehabilitation. Ann. Readapt. Med. Phys. 51(6), 452–460 (2008). DOI S0168-6054(08)00092-5

    Google Scholar 

  91. Thrasher, T.A., Zivanovic, V., McIlroy, W., Popovic, M.R.: Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabil. Neural Repair 22(6), 706–714 (2008). DOI 1545968308317436

    Google Scholar 

  92. Thuret, S., Moon, L.D., Gage, F.H.: Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci. 7(8), 628–643 (2006). DOI 10.1038/nrn1955

    Google Scholar 

  93. van den Berg, M.E., Castellote, J.M., Mahillo-Fernandez, I., de Pedro-Cuesta, J.: Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology 34(3), 184–192; discussion 192 (2010). DOI 000279335

    Google Scholar 

  94. van den Honert, C., Mortimer, J.T.: The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann. Biomed. Eng. 7(2), 117–125 (1979)

    Google Scholar 

  95. von Lewinski, F., Hofer, S., Kaus, J., Merboldt, K.D., Rothkegel, H., Schweizer, R., Liebetanz, D., Frahm, J., Paulus, W.: Efficacy of EMG-triggered electrical arm stimulation in chronic hemiparetic stroke patients. Restor. Neurol. Neurosci. 27(3), 189–197 (2009). DOI W57810637650U3X1

    Google Scholar 

  96. Wang, W., Collinger, J.L., Perez, M.A., Tyler-Kabara, E.C., Cohen, L.G., Birbaumer, N., Brose, S.W., Schwartz, A.B., Boninger, M.L., Weber, D.J.: Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys. Med. Rehabil. Clin. N. Am. 21(1), 157–178 (2010). DOI S1047-9651(09)00061-8

    Google Scholar 

  97. Warlow, C., van Gijn, J., Dennis, M., Wardlaw, J., Bamford, J., Sandercock, P., Rinkel, G., Langhorne, P., Sudlow, C., Rothwell, P.: Stroke: Practical management. 3rd edn. Blackwell, Oxford (2008)

    Google Scholar 

  98. Wheeler, C.A., Peckham, P.H.: Wireless wearable controller for upper-limb neuroprosthesis. J. Rehabil. Res. Dev. 46(2), 243–256 (2009)

    Google Scholar 

  99. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). DOI S1388245702000573

    Google Scholar 

Download references

Acknowledgements

This work is supported by the European ICT Programme Project FP7-224631 (TOBI—Tools for Brain Computer Interaction). This chapter only reflects the authors’ views and funding agencies are not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donatella Mattia or Rüdiger Rupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mattia, D., Pichiorri, F., Molinari, M., Rupp, R. (2012). Brain Computer Interface for Hand Motor Function Restoration and Rehabilitation. In: Allison, B., Dunne, S., Leeb, R., Del R. Millán, J., Nijholt, A. (eds) Towards Practical Brain-Computer Interfaces. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29746-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29746-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29745-8

  • Online ISBN: 978-3-642-29746-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics