Skip to main content

7.6 Enhanced Accumulation of Organic Matter: The Shunga Event

  • Chapter
  • First Online:
Reading the Archive of Earth’s Oxygenation

Abstract

A number of sedimentary formations deposited globally around 2.0 Ga ago are characterised by high abundances of organic carbon. These formations often contain occurrences of highly concentrated, matured organic material representing metamorphosed oil, now pyrobitumen. Apart from their common names pyrobitumen or anthraxolite, different terminology has been used for these rocks within the pertinent literature, including shungite, thucolite, or Precambrian “coal”. Given their long and frequently complex geologic history, these sedimentary formations exhibit a variable and sometimes substantial degree of metamorphic (thermal) overprint. Consequently, many of them show undisputable signs of thermal mobilisation, migration and likely loss of hydrocarbons/bitumen. This includes the so-called shungite rocks on the Fennoscandian Shield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahtonen N (1996) Geochemistry, mineralogy and petrophysics of black shales in the Northern Ostrobotnia schist belt with emphasis on ore prospecting. Unpublished M.Sc thesis, Department of Geology and Astronomy, University of Oulu, p 78, (in Finnish)

    Google Scholar 

  • Akhmedov AM, Krupenik VA (1990) Turbidity conditions of sedimentation and pyrite formation in the early Proterozoic Pechenga basin. Sov Geol 11:51–60 (in Russian)

    Google Scholar 

  • Arkimaa H, Hyvönen E, Lerssi J, Loukola-Ruskeeniemi K, Vanne J (2000) Proterozoic black shales and aeromagnetic anomalies in Finland, Scale 1: 1 000 000. Geological Survey of Finland, Espoo

    Google Scholar 

  • Arthur MA, Sageman BB (1994) Marine black shales: depositional mechanism and environments of ancient deposits. Annu Rev Earth Planet Sci 22:499–551

    Google Scholar 

  • Avedisyan AA (1995) Lithologic-geochemical features of metasediments of the “productive unit” and Southern zone. In: Mitrofanov FP, Smolkin VF (eds) Magmatism, sedimentogenes and geodynamics of the Pechenga Palaeoriftogenic structure. Kola Research Centre, Apatity, pp 124–138 (in Russian)

    Google Scholar 

  • Bekasova NB (1985) Pechenga palaeogeography in early Pilgujärvi time of the early Proterozoic. Lithol Miner Resour 1:127–137 (in Russian)

    Google Scholar 

  • Bekker A, Karhu JA, Eriksson KA, Kaufman AJ (2003a) Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Res 120:279–325

    Google Scholar 

  • Bekker A, Sial AN, Karhu JA, Ferreira VP, Noce CM, Kaufman AJ, Romano AW, Pimentel MM (2003b) Chemostratigraphy of carbonates from the Minas Supergroup, Quadrilátero Ferrifero, Brazil: a stratigraphic record of early Proterozoic atmospheric, biogeochemical and climatic change. Am J Sci 303:865–904

    Google Scholar 

  • Bekker A, Holmden C, Beukes NJ, Kenig F, Eglington B, Patterson WP (2008) Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet Sci Lett 271:278–291

    Google Scholar 

  • Berner RA (1993) Weathering and its effect on atmospheric CO2 over Phanerozoic time. Chem Geol 107:373–374

    Google Scholar 

  • Beukes NJ, Klein C, Kaufman AJ, Hayes JM (1990) Carbonate petrography, kerogen distribution and carbon ad oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition. Econ Geol 85:663–690

    Google Scholar 

  • Biske NC (1997) Carbon isotopic composition of graphite in Northern Ladoga area. In: Geology, petrography and geochemistry of Precambrian rocks of Karelia. Karelian Research Centre, Petrozavodzk, pp 37–40 (in Russian)

    Google Scholar 

  • Biske NC, Romashkin AE, Rychanchik DV (2004) Petrosavodsk peperite-structures of Lebestchina. In: Geology and mineral deposits. Proceedings of the Institute of Geology, Karelian Research Centre, vol 7, pp 193–199, Karelian Research Centre, Petrozavodsk (in Russian)

    Google Scholar 

  • Blankenship RE, Sadekar S, Raymond J (2007) The evolutionary transition from anoxygenic to oxygenic photosynthesis. In: Falkowski PG, Knoll AH (eds) The evolution of primary producers in the Sea. Elsevier, Boston, pp 21–35

    Google Scholar 

  • Bondesen E, Pedersen KR, Jørgensen O (1967) Precambrian organisms and the isotopic composition of organic remains in the Ketilidian of south-west Greenland. Grønlands Geologiske Undersøgelse Bulletin 67:1–41

    Google Scholar 

  • Bonhomme M, Gauthier-Lafaye F, Weber F (1982) An example of lower Proterozoic sediments: the Francevillain in Gabon. Precambrian Res 18:87–102

    Google Scholar 

  • Borisov PA (1956) The Karelian Shungites. Karelian Book Publisher, Petrozavodsk, p 92 (in Russian)

    Google Scholar 

  • Bradley DC (2008) Passive margins through earth history. Earth Sci Rev 91:1–26

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Google Scholar 

  • Brocks JJ, Love GD, Snape CE, Logan GA, Summons RE, Buick R (2003) Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochim Cosmochim Acta 67:1521–1530

    Google Scholar 

  • Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866

    Google Scholar 

  • Bruneau PMC, Ostle N, Davidson DA, Grieve IC, Fallick AE (2002) Determination of rhizosphere 13C pulse signals in soil thin sections by laser ablation isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 16:2190–2194

    Google Scholar 

  • Buseck PR, Tsipursky SJ, Hettich R (1992) Fullerenes from the geological environment. Science 257:215–217

    Google Scholar 

  • Buseck PR, Galdobina LP, Kovalevski VV, Rozhkova NN, Valley JW, Zaidenberg AZ (1997) Shungites: the C-rich rocks of Karelia, Russia. Can Mineralogist 35:1363–1378

    Google Scholar 

  • Chadwick B, Claeys P, Simonson B (2001) New evidence for a large Palaeoproterozoic impact: spherules in a dolomite layer in the Ketilidian orogen, South Greenland. J Geol Soc 158:331–340

    Google Scholar 

  • Clarke RH, Cleverly RW (1990) Leakage and post accumulation migration. In: England WA, Fleet AJ (eds) Caprocks and seals. Geol Soc Lon, Spec Pub 59:265–271

    Google Scholar 

  • Condie KC (2004) Precambrian superplume events. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events, development in Precambrian geology, vol 12. Elsevier B.V., Amsterdam, pp 163–173

    Google Scholar 

  • Cortial F, Gauthier-Lafaye F, Lacrampe-Couloume G, Oberlin A, Weber F (1990) Characterization of organic matter associated with uranium deposits in the Francevillian Formation of Gabon (Lower Proterozoic). Org Geochem 15:73–85

    Google Scholar 

  • Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. Rev Mineral Geochem 43:555–578

    Google Scholar 

  • Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the great oxidation event. Geology 34:437–440

    Google Scholar 

  • Dutkiewicz A, George SC, Mossman DJ, Ridley J, Volk H (2007) Oil and its biomarkers associated with the Palaeoproterozoic Oklo natural fission reactors, Gabon. Chem Geol 244:130–154

    Google Scholar 

  • Ebbesen TW, Hiura H, Hedenquist JW, De Ronde CEJ, Andersen A, Often M, Melezhik VA (1995) Origin of fullerenes in rocks. Science 268:1634–1635

    Google Scholar 

  • Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci USA 103:15759–15764

    Google Scholar 

  • Eriksson PG, Catuneanu O, Sarkar S, Tirsgaard H (2005) Patterns of sedimentation in the Precambrian. Sediment Geol 176:17–42

    Google Scholar 

  • Ernst R, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can J Earth Sci 47:695–739

    Google Scholar 

  • Fallick AE, Melezhik VA, Simonson B (2008) The ancient anoxic biosphere was not as we know it. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer Science+Business Media, New York, pp 169–188

    Google Scholar 

  • Fallick AE, Melezhik VA, Simonson B (2011) On Proterozoic ecosystems and the carbon isotopic composition of carbonates associated with banded iron formations. In: Neves L et al (eds) Modelacao de Sistemas Geologicos. Universidade de Coimbra, Portugal, pp 57–71

    Google Scholar 

  • Filippov MM (1994) Current views on the organic precursor of shungite rocks. In: Filippov MM (ed) The organic matter of Karelian Shungite rocks (genesis, evolution and the methods of study). Karelian Research Centre, Petrozavodsk, pp 16–24, (in Russian)

    Google Scholar 

  • Filippov MM (2000) Formational model of shungite deposits in the Onega Synclinorium. Doctoral thesis, St. Petersburg University, p 310 (in Russian)

    Google Scholar 

  • Filippov MM (2002) Shungite rocks of the Onega structure. Karelian Research Centre, Petrozavodsk, p 280 (in Russian)

    Google Scholar 

  • Filippov MM, Golubev AI (1994) Carbon isotope composition of shungite rocks. In: Filippov MM (ed) The organic matter of Karelian Shungite rocks (genesis, evolution and the methods of study). Karelian Research Centre, Petrozavodsk, pp 32–43 (in Russian)

    Google Scholar 

  • Filippov MM, Romashkin AE (1994) Shungite rocks. Karelian Research Centre, Petrozavodsk, p 89 (in Russian)

    Google Scholar 

  • Filippov MM, Golubev AI, Romashkin AE, Rychanchik DV (1994) Mineral constituent of shungite-bearing rocks: primary composition, sources and relation to shungite matter. In: Filippov MM (ed) The organic matter of Karelian Shungite rocks (genesis, evolution and the methods of study). Karelian Research Centre, Petrozavodsk, pp 78–93 (in Russian)

    Google Scholar 

  • Filippov MM, Melezhik VA et al (eds) (2007) Atlas of textures and structures of shungite rocks of the Onega Synclinorium. Scandinavia, Petrozavodsk, p 80 (in Russian)

    Google Scholar 

  • Galdobina LP (1987) The Ludicovian horizon. In: Sokolov VA (ed) The geology of Karelia. Nauka, Leningrad, pp 59–67 (in Russian)

    Google Scholar 

  • Galdobina LP, Schidlowski M, Matzigkait U, Sokolov VA (1984) Isotopic study of early Proterozoic shungite, Karelia. In: Abstract volume II, 27th international geological congress, Moscow, p 292 (in Russian)

    Google Scholar 

  • Galdobina LP, Kalinin YK, Kupryakov SV (1986) Endogenic origin of the Karelian shungite rocks. Abstract, the 2nd all-union symposium on carbon geochemistry, GEOKHI, Moscow, pp 79–81 (in Russian)

    Google Scholar 

  • Garvin J, Buick R, Anbar AD, Arnold GL, Kaufman AJ (2009) Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323:1045–1048

    Google Scholar 

  • Gauthier-Lafaye F, Weber F (1989) The Francevillian (Lower Proterozoic) uranium ore deposits of Gabon. Econ Geol 84:2267–2285

    Google Scholar 

  • Geothermal Gradients (2011) http://www.CliffsNotes.com. Accessed 3 May 2011

  • Golubic S, Hofmann HJ (1976) Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J Paleontol 50:1074–1082

    Google Scholar 

  • Gorlov VI (1984) The Onega shungite (geology, genesis and economic potential), D.Sc. thesis, Leningrad, p 20 (in Russian)

    Google Scholar 

  • Graham CM, Harmon RS (1983) Stable isotope evidence on the nature of crust-mantle interaction. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 20–45

    Google Scholar 

  • Grapes RH (2006) Pyrometamorphism. Springer, Berlin/Heidelberg, p 275

    Google Scholar 

  • Gretener PE (1969) Fluid pressure in porous media – its importance in geology, a review. Bull Can Petrol Geol 17:255–295

    Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Proterozoic stromatolites: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    Google Scholar 

  • Hannah JL, Stein HJ, Bekker A, Markey RJ, Holland HD (2003) Chondritic initial 187Os/188Os in Paleoproterozoic shale (seawater) and the onset of oxidative weathering. Geochim Cosmochim Acta 67:A-34

    Google Scholar 

  • Hannah JL, Stein HJ, Zimmerman A, Yang G, Melezhik VA, Filippov MM, Turgeon SC, Creaser RA (2008) Re-Os geochronology of a 2.05 Ga fossil oil field near Shunga, Karelia, NW Russia. In: Abstract, the 33rd international geological congress, Oslo, 6–14 Aug 2008

    Google Scholar 

  • Hanski EJ (1992) Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Bull Geol Surv Finl 367:1–192

    Google Scholar 

  • Hanski E, Huhma H (2005) Central Lapland greenstone belt. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 139–194

    Google Scholar 

  • Hayes JM (1993) Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar Geol 113:111–125

    Google Scholar 

  • Hayes JM (1994) Global methanotrophy at the Archean-Proterozoic transition. In: Bengtson S (ed) Early life on Earth. Columbia University Press, New York, pp 220–236

    Google Scholar 

  • Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. R Soc Lond Philos Trans Ser B Biol Sci B361:931–950

    Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 93–134

    Google Scholar 

  • Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161:103–125

    Google Scholar 

  • Hazov RA, Hazova VI (1982) Area of Pitkäranta (Northern Ladoga). In: Sokolov VA (ed) Geology of shungite bearing volcanic and sedimentary rocks of Palaeoproterozoic of Karelia. Karelian Research Centre, Petrozavodzk, pp 63–75 (in Russian)

    Google Scholar 

  • Hedberg HD (1974) Relation of methane generation to under compacted shales, shale diapirs, and mud volcanoes. Bull Am Assoc Petrol Geologists 58:661–673

    Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry, Sixth revised and updated edition. Springer, Berlin, p 201

    Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematic. J Palaeontol 50:1040–1073

    Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci B361:903–915

    Google Scholar 

  • Honkamo M (1985) On the Proterozoic metasedimentary rocks of the Northern Pohjanmaa schist area, Finland. Bull Geol Surv Finl 331:117–129

    Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology. W.H. Freeman & Co, New York, p 743

    Google Scholar 

  • Inostranzev AA (1885) Geology. General lecture course for students of the St.-Petersburg University, vol 1, 2nd edn. St-Petersburg University, St-Petersburg (in Russian)

    Google Scholar 

  • Inostranzev AA (1886) Once more on shungite. Mining J 2:35–45 (in Russian)

    Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for the source of diagenetic carbonate during burial of organic-rich sediments. Nature 269:209–213

    Google Scholar 

  • Jiracek GR, Ander ME, Holcomber HT (1986) Magnetotelluric soundings of crustal conductive zones in major continental rifts. In: Riecker RE (ed) Rio grande rift: tectonics and magmatism. American Geophysical Union, Washington, DC, pp 209–222

    Google Scholar 

  • Karhu JA (1993) Palaeoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Bull Geol Surv Finl 371:1–87

    Google Scholar 

  • Khavari-Khorasani G, Murchison DG (1979) The nature of Karelian shungite. Chem Geol 26:165–182

    Google Scholar 

  • Knoll AH, Summons RE, Waldbauer JR, Zumberge J (2007) The geological succession of primary producers in the Oceans. In: Falkowski PG, Knoll AH (eds) The evolution of primary producers in the Sea. Elsevier, Boston, pp 133–163

    Google Scholar 

  • Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wenneström M, Korhonen J (comps.) (2001) Geological map of the Fennoscandian Shield, Scale 1:2 000 000. Espoo/Trondheim/Upsala/Moscow

    Google Scholar 

  • Kontinen A (1987) An early Proterozoic ophiolite – the Jormua mafic–ultramafic complex, northeastern Finland. Precambrian Res 35:313–341

    Google Scholar 

  • Korja T, Tuisku P, Pernu T, Karhu J (1996) Field, petrophysical and carbon isotope studies on the Lapland Granulite Belt: implications for deep continental crust. Terra Nova 8:48–58

    Google Scholar 

  • Kovalevski VV, Buseck PR, Cowley JM (2001) Comparison of carbon in shungite rocks to other natural carbons: an X-ray and TEM study. Carbon 39:243–256

    Google Scholar 

  • Krupenik VA, Akhmedov AM, Sveshnikova KYu (2011a) The section of the Onega structure based on the Onega parametric drillhole. In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (Geology, tectonics, deep structure and minerageny). Karelian Research Centre, Petrozavodsk, pp. 172–189 (in Russian).

    Google Scholar 

  • Krupenik, V.A., Akhmedov, A.M., and Sveshnikova, K.Yu., (2011b) Isotopic composition of carbon, oxygen and sulphur in the Ludicovian and Jatulian rocks. In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (Geology, tectonics, deep structure and minerageny). Karelian Research Centre, Petrozavodsk, pp. 250–255 (in Russian).

    Google Scholar 

  • Kupryakov SV (1994) Geology and genesis of shungite rocks at Zazhogino. In: Filippov MM (ed) The organic matter of Karelian Shungite rocks (genesis, evolution and the methods of study). Karelian Research Centre, Petrozavodsk, pp 93–98 (in Russian)

    Google Scholar 

  • Kupryakov SV, Mikhailov VP (1988) Zazhogino deposit of shungite rocks. In: News in geology of the North-West of the RSFSR. Science (Nauka), Moscow, pp 9–86 (in Russian)

    Google Scholar 

  • Lahtinen R, Huhma H, Kontinen A, Kohonen J, Sorjonen-Ward P (2010) New constraints for the source characteristics, deposition and age of the 2.1–1.9 Ga metasedimentary cover at the western margin of the Karelian Province. Precambrian Res 176:77–93

    Google Scholar 

  • Lancea S, Henrya P, Le Pichona X, Lallemanta S, Chamleyb H, Rostekc F, Faugèresd J-C, Gonthierd E, Olue K (1998) Submersible study of mud volcanoes seaward of the Barbados accretionary wedge: sedimentology, structure and rheology. Mar Geol 145:255–292

    Google Scholar 

  • Lehtonen M, Airo M-L, Eilu P, Hanski E, Kortelainen V, Lanne E, Manninen T, Rastas P, Räsänen J, Virransalo P (1998) The stratigraphy, petrology and geochemistry of the Kittilä greenstone area, northern Finland. A report of the Lapland volcanite project. Geol Surv Finl, Rep Invest 140:1–144 (in Finnish with English summary)

    Google Scholar 

  • Loukola-Ruskeeniemi K (1991) Geochemical evidence for a hydrothermal origin of sulphur, base metals and gold in Proterozoic metamorphosed black shales, Kainuu and Outokumpu areas, Finland. Miner Deposita 26:152–164

    Google Scholar 

  • Loukola-Ruskeeniemi K (1999) Origin of black shales and the serpentinite-associated Cu-Zn-Co ores at Outokumpu, Finland. Econ Geol 94:1007–1028

    Google Scholar 

  • Loukola-Ruskeeniemi K (2011) Graphite- and sulphide-bearing schists in the Outokumpu R2500 drill core: comparison with the Ni-Cu-Co-Zn-Mn-rich black schists at Talvivaara, Finland. Geol Surv Finl, Spec Pap 51:229–252

    Google Scholar 

  • Loukola-Ruskeeniemi K, Heino T (1996) Geochemistry and genesis of the black shale-hosted Ni-Cu-Zn deposit at Talvivaara, Finland. Econ Geol 91:80–110

    Google Scholar 

  • Loukola-Ruskeeniemi K, Heino T, Talvitie J, Vanne J (1991) Base-metal-rich metamorphosed black shales associated with Proterozoic ophiolites in the Kainuu schist belt, Finland: a genetic link with the Outokumpu rock assemblage. Miner Deposita 26:143–151

    Google Scholar 

  • Lukkarinen H (2008) Pre-Quaternary rocks of the Siilinjärvi and Kuopio map-sheet areas. Explanation to the maps of Pre-Quaternary rocks, sheets 3331 and 3242. Geological Survey of Finland, Espoo, p 228 (in Finnish with English summary)

    Google Scholar 

  • Lyell C (1830) Principles of geology. John Murry, London, p 586

    Google Scholar 

  • Macaulay CM, Fallick AE, Haszeldine RS, Graham CM (2000) Methods of laser-based stable isotope measurement applied to diagenetic cements and hydrocarbon reservoir quality. Clay Mineral 35:313–322

    Google Scholar 

  • Mancuso JJ, Kneller WA, Quick J (1989) Precambrian vein pyrobitumen: evidence for petroleum generation and migration 2 Ga ago. Precambrian Res 44:137–146

    Google Scholar 

  • Manninen T (1991) Volcanic rocks in the Salla area, northeastern Finland. A report of the Lapland volcanite project. Geol Surv Finl, Rep Invest 104:1–97 (in Finnish with English summary)

    Google Scholar 

  • Master S, Bekker A, Hofmann A (2010) A review of the stratigraphy and geological setting of the Palaeoproterozoic Magondi Supergroup, Zimbabwe – type locality for the Lomagundi carbon isotope excursion. Precambrian Res 182:254–273

    Google Scholar 

  • McKirdy DM (1974) Organic geochemistry in Precambrian research. Precambrian Res 1:75–137

    Google Scholar 

  • McKirdy DM, Imbus SW (1992) Precambrian petroleum: a decade of changing perceptions. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin, pp 176–192

    Google Scholar 

  • Melezhik VA (1992) Early Proterozoic sedimentary and rock-forming basins of the Baltic Shield. Nauka (Science), Leningrad, p 256 (in Russian)

    Google Scholar 

  • Melezhik VA, Predovsky AA (1982) Geochemistry of early Proterozoic lithogenesis. Nauka (Science), St. Leningrad, p 208 (in Russian)

    Google Scholar 

  • Melezhik VA, Basalaev AA, Predovsky AA, Balabonin NL, Bolotov VI, Pavlova MA, Gavrilenko BV, Abzalov MZ (1988) Carbonaceous deposits of the earliest stages of earth evolution (geochemistry and depositional environments on the Baltic Shield). Nauka (Science), Leningrad, p 197 (in Russian)

    Google Scholar 

  • Melezhik VA, Fallick AE, Filippov MM, Larsen O (1999a) Karelian shungite an indication of 2000 Ma-year-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry. Earth Sci Rev 47:1–40

    Google Scholar 

  • Melezhik VA, Fallick AE, Medvedev PV, Makarikhin VV (1999b) Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolitedolomite-“ red beds” association in a global context: a case for the world-wide signal enhanced by a local environment. Earth Sci Rev 48:71–120

    Google Scholar 

  • Melezhik VA, Filippov MM, Romashkin AE (2004) A giant Palaeoproterozoic deposit of shungite in NW Russia: genesis and practical applications. Ore Geol Rev 24:135–154

    Google Scholar 

  • Melezhik VA, Fallick AE, Filippov MM, Lepland A, Rychanchik DV, Deines YE, Medvedev PV, Romashkin AE, Strauss H (2009) Petroleum surface oil seeps from a Palaeoproterozoic petrified giant oilfield. Terra Nova 21:119–126

    Google Scholar 

  • Mishunina ZA (1979) Petroleum genesis in carbonate formations. In: Nalivkin VD, Ivanchuk PK, Dvali MF (eds) Problems in the geology of oil and gas. Nedra, Leningrad, pp 139–143 (in Russian)

    Google Scholar 

  • Morozov AF, Hakhaev BN, Petrov OV, Gorbachev VI, Tarkhanov GB, Tsvetkov LD, Erinchek YuM, Akhmedov AM, Krupenik VA, Sveshnikova KYu (2010) Rock-salts in Palaeoproterozoic strata of the Onega depression of Karelia (based on data from the Onega parametric drillhole). Trans Acad Sci 435(2):230–233 (in Russian)

    Google Scholar 

  • Mossman D, Eigendorf G, Tokaryk D, Gauthier-Lafaye F, Guckert KD, Melezhik VA, Farrow CEG (2003) Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff. Geology 31:255–258

    Google Scholar 

  • Mossman DJ, Gauthier-Lafaye F, Jackson SE (2005) Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon. Precambrian Res 137:253–272

    Google Scholar 

  • Mutanen T, Huhma H (2001) U-Pb geochronology of the Koitelainen, Akanvaara and Keivitsa layered intrusions and related rocks. In: Vaasjoki M (ed) Radiometric age determinations from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geol Surv Finl, Spec Pap 33:229–246

    Google Scholar 

  • Neruchev SG, Rogosina EA, Shimansky BK (1998) Reference on petroleum and gas geochemistry. Nedra, St. Petersburg, p 575 (in Russian)

    Google Scholar 

  • Onuma N, Clayton RN, Mayeda TK (1972) Oxygen isotope cosmothermometer. Geochim Cosmochim Acta 36:169–188

    Google Scholar 

  • Ovchinnikova GV, Kusnetzov AB, Melezhik VA, Gorokhov IM, Vasiĺeva IM, Gorokhovsky BM (2007) Pb-Pb age of Jatulian carbonate rocks: the Tulomozero Formation in south-eastern Karelia. Stratigr Geol Correl 4:20–33

    Google Scholar 

  • Paakkola J (1971) The volcanic complex and associated manganiferous iron formation of the Porkonen-Pahtavaara area in Finnish Lapland. Bull Geol Surv Finl 247:1–83

    Google Scholar 

  • Paakkola J, Gehör S (1988) The lithofacies associations and sedimentary structures of the iron-formations in the early Proterozoic Kittilä greenstone belt, northern Finland. Geol Surv Finl, Spec Pap 5:213–238

    Google Scholar 

  • Papineau D, Purohit R, Goldberg T, Pi D, Shields G, Bhu HR, Steele A, Fogel ML (2009) High productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambrian Res 171:37–56

    Google Scholar 

  • Pekkarinen L (1979) The Karelian formations and their depositional basement in the Kiihtelysvaara-Tohmajärvi district, eastern Finland. Bull Geol Surv Finl 301:1–141

    Google Scholar 

  • Pekkarinen LJ, Lukkarinen H (1991) Paleoproterozoic volcanism in the Kiihtelysvaara – Tohmajärvi district, eastern Finland. Bull Geol Surv Finl 357:1–30

    Google Scholar 

  • Peltonen P (2005) Ophiolites. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 237–278

    Google Scholar 

  • Peng Y, Baoa H, Yuan X (2009) New morphological observations for Paleoproterozoic acritarchs from the Chuablinggou Formation, North China. Precambrian Res 168:223–232

    Google Scholar 

  • Perttunen V, Hanski E (2003) Pre-Quaternary rocks of the Koivu and Törmäsjärvi map-sheet areas. Explanation to the geological map of Finland 1:100 000, pre-Quaternary rocks, sheets 3631 and 2633. Geological Survey of Finland, Espoo, p 88 (in Finnish with English summary)

    Google Scholar 

  • Prokoph A, Shields GA, Veizer J (2009) Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci Rev 87:113–133

    Google Scholar 

  • Puchtel IS, Zhuravlev DZ, Ashikhmina NA, Kulikov VS, Kulikova VV (1992) Sm-Nd age of the Suisarian suite on the Baltic Shield. Trans Russ Acad Sci 326:706–711 (in Russian)

    Google Scholar 

  • Puchtel IS, Arndt NT, Hofmann AW, Haase KM, Kröner A, Kulikov VS, Kulikova VV, Garbe-Schönberg C-D, Nemchin AA (1998) Petrology of mafic lavas within the Onega plateau, central Karelia: evidence for the 2.0 Ga plume-related continental crustal growth in the Baltic Shield. Contrib Mineral Petr 130:134–153

    Google Scholar 

  • Puchtel IS, Brügmann GE, Hofmann AW (1999) Precise Re-Os mineral isochron and Pb-Nd-Os isotope systematics of a mafic-ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield). Earth Planet Sci Lett 170:447–461

    Google Scholar 

  • Rankama K (1948) New evidence on the origin of pre-Cambrian carbon. Bull Geol Soc Am 59:389–416

    Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1105

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    Google Scholar 

  • Ryabov NI (1948) Description of the Karelian shungite deposits. Unpublished report 1314, Karelian geological expedition, p 51 (Russian)

    Google Scholar 

  • Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318

    Google Scholar 

  • Schidlowski M, Appel PWU, Eichmann R, Junge CE (1979) Carbon isotope geochemistry of the 3.7. 109 yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim Cosmochim Acta 43:189–199

    Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 149–186

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry – an analysis of global change, 2nd edn. Academic, San Diego, p 588

    Google Scholar 

  • Shatzky GV (1990) Isotope composition of sulphides from the Zazhogino shungite deposit. Lithol Mineral Deposits 1:20–28 (in Russian)

    Google Scholar 

  • Sheppard SMF (1977) The Cornubian batholiths, SW England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J Geol Soc Lond 133:573–591

    Google Scholar 

  • Shields G, Veizer J (2002) Precambrian marine carbonate isotope database: version 1.1. Geochem Geophys Geosyst 3:1–12

    Google Scholar 

  • Silvennoinen A (1972) On the stratigraphic and structural geology of the Rukatunturi area, northeastern Finland. Geol Surv Finl Bull 257:1–48

    Google Scholar 

  • Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma–sediment mingling. J Volcanol Geotherm Res 114:1–7

    Google Scholar 

  • Sozinov NA, Chistyakova NN, Kazantsev VA (1988) Metallogenic black shales of the Kursk Magnetic anomaly. Nauka (Science), Moscow, p 149 (in Russian)

    Google Scholar 

  • Stadnitskaia A, Ivanov MK, Poludetkina EN, Kreulen R, van Weering TCE (2008) Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions. Mar Petrol Geol 25:1040–1057

    Google Scholar 

  • Strauss H, Moore TB (1992) Abundances and isotopic compositions of carbon and sulphur species in whole rock and kerogen. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 709–797

    Google Scholar 

  • Strauss H, Des Marais DJ, Summons RE, Hayes JM (1992) The carbon-isotopic record. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 117–127

    Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Google Scholar 

  • Taran LN, Onoshko MP, Mikhailov ND (2011) Structure and composition of organic matter and isotope geochemistry of the Palaeoproterozoic graphite and sulphide-rich metasedimentary rocks from the Outokumpu deep drill hole, eastern Finland. In: Kukkonen IT (ed) Outokumpu deep drilling project 2003–2010. Geol Surv Finl, Spec Pap 51:219–228

    Google Scholar 

  • Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and deposition. Econ Geol 69:843–883

    Google Scholar 

  • Taylor HP, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. Rev Mineral 16:227–271

    Google Scholar 

  • Thomazo C, Pinti D, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C R Palevol 8:665–678

    Google Scholar 

  • Thomazo C, Ader M, Philippot P (2011) Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9:107–120

    Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin, p 699

    Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Google Scholar 

  • Weber F, Schidlowski M, Arneth JD, Gauthier-Lafaye F (1983) Carbon isotope geochemistry of the lower proterozoic Francevillian series of Gabon (Africa). Terra Cognita 3:220

    Google Scholar 

  • Wilton DHC (1996) Palaeoproterozoic, 1.88–2.0 Ga, organic matter from the Mugford Kaumajet mountain group, northern Labrador. Precambrian Res 77:131–141

    Google Scholar 

  • Winter BL, Knauth LP (1992) Stable isotope geochemistry of cherts and carbonates from the 2.0 Ga Gunflint iron formation: implications for the depositional setting, and the effects of diagenesis and metamorphism. Precambrian Res 59:283–313

    Google Scholar 

  • Worden KE, Carson CJ, Scrimgeour IR, Lally JH, Doyle N (2008) A revised Palaeoproterozoic chronostratigraphy for the central Pine Creek Orogen, northern Australia: evidence from SHRIMP U-Pb zircon geochronology. Precambrian Res 166:122–144

    Google Scholar 

  • Yudovich YE, Makarikhin VV, Medvedev PV, Sukhanov NV (1991) Carbon isotope anomalies in carbonates of the Karelian Complex. Geochem Int 28:56–62

    Google Scholar 

  • Zakrutnin VE, Zhmur SI (1989) Carbonaceous-rich formation in the Kursk magentic anomaly, lower Proterozoic. Rostov University, Rostov on Don, p 125 (in Russian)

    Google Scholar 

  • Zhang Z (1986) Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China. J Micropalaeontol 5:9–16

    Google Scholar 

  • Zhao G, Cawood PA, Wilde A, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Strauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strauss, H. et al. (2013). 7.6 Enhanced Accumulation of Organic Matter: The Shunga Event. In: Melezhik, V., et al. Reading the Archive of Earth’s Oxygenation. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29670-3_6

Download citation

Publish with us

Policies and ethics