Skip to main content

Holographic Optical Tweezers

  • Chapter
  • First Online:
Structured Light Fields

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Holographic optical tweezers (HOT) employ a relatively simple form of holographic beam-shaping that produces discrete, point-like intensity peaks in the optical trapping plane, each of which acts as a single optical tweezer. For each tweezer, lateral position and axial position can be determined individually by means of accordingly prepared holograms that split the incident wave front and set propagation angles and divergence properties. After a short discussion on the fundamental concepts of HOT and a brief review of the extensive literature emphasising applications in colloidal sciences, this chapter introduces two novel applications of HOT. The first application addresses the urgent demand for full position and orientation control on rod-shaped bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The experiments discussed in this section were performed in collaboration with Mr Florian Hörner within the framework of his diploma thesis (Hörner 2010) and have resulted in a joint publication (Hörner et al. 2010).

  2. 2.

    The viscosity was increased by a factor of 6.0 compared to pure water, using a mixture of 50 % water and 50 % glycerol (Segur and Oberstar 1951).

References

  • Agarwal R, Ladavac K, Roichman Y, Yu G, Lieber C, Grier D (2005) Manipulation and assembly of nanowires with holographic optical traps. Opt Express 13:8906–8912

    Article  ADS  Google Scholar 

  • Alpmann C (2010) Maßgeschneiderte Lichtfelder zur mehrdimensionalen Manipulation von Materie in optischen Pinzetten. Master’s thesis, Westfälische Wilhelms-Universität Münster

    Google Scholar 

  • Aranson I, Sokolov A, Kessler J, Goldstein R (2007) Model for dynamical coherence in thin films of self-propelled microorganisms. Phys Rev E 75:040901

    Article  ADS  Google Scholar 

  • Ashkin A, Dziedzic J (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520

    Article  ADS  Google Scholar 

  • Ashkin A, Dziedzic J, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771

    Article  ADS  Google Scholar 

  • Benito D, Carberry D, Simpson S, Gibson G, Padgett M, Rarity J, Miles M, Hanna S (2008) Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers. Opt Express 16:13005–13015

    Article  ADS  Google Scholar 

  • Berg H (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  Google Scholar 

  • Bingelyte V, Leach J, Courtial J, Padgett M (2003) Optically controlled three-dimensional rotation of microscopic objects. Appl Phys Lett 82:829–831

    Article  ADS  Google Scholar 

  • Braun P, Rinne S, Garcia-Santamaria F (2006) Introducing defects in 3D photonic crystals: State of the art. Adv Mater 18:2665–2678

    Article  Google Scholar 

  • Bruhwiler D, Calzaferri G (2004) Molecular sieves as host materials for supramolecular organization. Micropor Mesopor Mater 72:1–23

    Article  Google Scholar 

  • Busby M, Blum C, Tibben M, Fibikar S, Calzaferri G, Subramaniam V, De Cola L (2008) Time, space, and spectrally resolved studies on J-aggregate interactions in zeolite L nanochannels. J Am Chem Soc 130:10970–10976

    Article  Google Scholar 

  • Calzaferri G, Meallet-Renault R, Bruhwiler D, Pansu R, Dolamic I, Dienel T, Adler P, Li H, Kunzmann A (2011) Designing dye-nanochannel antenna hybrid materials for light harvesting, transport and trapping. ChemPhysChem 12:580–594

    Article  Google Scholar 

  • Carmon G, Feingold M (2011) Rotation of single bacterial cells relative to the optical axis using optical tweezers. Opt Lett 36:40–42

    Article  ADS  Google Scholar 

  • Cisneros L, Cortez R, Dombrowski C, Goldstein R, Kessler J (2007) Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids 43: 737–753

    Article  Google Scholar 

  • Cizmar T, Mazilu M, Dholakia K (2010) In situ wavefront correction and its application to micromanipulation. Nat Photonics 4:388–394

    Article  ADS  Google Scholar 

  • Crocker J (1997) Measurement of the hydrodynamic corrections to the brownian motion of two colloidal spheres. J Chem Phys 106:2837–2840

    Article  ADS  Google Scholar 

  • Crocker J, Grier D (1994) Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys Rev Lett 73:352–355

    Article  ADS  Google Scholar 

  • Curtis J, Koss B, Grier D (2002) Dynamic holographic optical tweezers. Opt Commun 207:169–175

    Article  ADS  Google Scholar 

  • Curtis J, Schmitz C, Spatz J (2005) Symmetry dependence of holograms for optical trapping. Opt Lett 30:2086–2088

    Article  ADS  Google Scholar 

  • Darnton N, Turner L, Breuer K, Berg H (2004) Moving fluid with bacterial carpets. Biophys J 86:1863–1870

    Article  Google Scholar 

  • Dasgupta R, Mohanty S, Gupta P (2003) Controlled rotation of biological microscopic objects using optical line tweezers. Biotechnol Lett 25:1625–1628

    Article  Google Scholar 

  • El-Daly S (1999) Spectral, lifetime, fluorescence quenching, energy transfer and photodecomposition of \(N,N^{\prime}\)-bis(2,6-dimethyl phenyl)-3,4:9,10-perylentetracarboxylic diimide (DXP). Spectrochim Acta, Part A 55:143–152

    Google Scholar 

  • Elemans J, Rowan A, Nolte R (2003) Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J Mater Chem 13:2661–2670

    Article  Google Scholar 

  • Fienup J (1982) Phase retrieval algorithms—a comparison. Appl Opt 21:2758–2769

    Article  ADS  Google Scholar 

  • Gerchberg R, Saxton W (1972) A practical algorithm for determination of phase from image and diffraction plane pictures. Optik 35:237–246

    Google Scholar 

  • Gibson G, Carberry D, Whyte G, Leach J, Courtial J, Jackson J, Robert D, Miles M, Padgett M (2008) Holographic assembly workstation for optical manipulation. Appl Phys B-Lasers O 10:044009

    Google Scholar 

  • Goodman J, Silvestri A (1970) Some effects of Fourier-domain phase quantization. IBM J Res Dev 14:478

    Article  MATH  Google Scholar 

  • Grier D (1997) Optical tweezers in colloid and interface science. Curr Opin Colloid In 2:264–270

    Article  Google Scholar 

  • Gyrya V, Aranson I, Berlyand L, Karpeev D (2010) A model of hydrodynamic interaction between swimming bacteria. Bull Math Biol 72:148–183

    Article  MathSciNet  MATH  Google Scholar 

  • Haist T, Schönleber M, Tiziani H (1997) Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays. Opt Commun 140:299–308

    Article  ADS  Google Scholar 

  • Hesseling C, Woerdemann M, Hermerschmidt A, Denz C (2011) Controlling ghost traps in holographic optical tweezers. Opt Lett 36:3657–3659

    Article  ADS  Google Scholar 

  • Hörner F (2010) Dreidimensionale, optisch induzierte manipulation von mikropartikeln. Master’s thesis, Westfälische Wilhelms-Universität Münster

    Google Scholar 

  • Hörner F, Woerdemann M, Müller S, Maier B, Denz C (2010) Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J Biophoton 3:468–475

    Article  Google Scholar 

  • Ito M, Terahara N, Fujinami S, Krulwich T (2005) Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol 352:396–408

    Article  Google Scholar 

  • Kim M, Breuer K (2007) Controlled mixing in microfluidic systems using bacterial chemotaxis. Anal Chem 79:955–959

    Article  Google Scholar 

  • Kim M, Bird J, van Parys A, Breuer K, Powers T (2003) A macroscopic scale model of bacterial flagellar bundeling. Proc Natl. Acad Sci U.S.A. 100:15485

    ADS  Google Scholar 

  • Kolter R, Greenberg E (2006) Microbial sciences—the superficial life of microbes. Nature 441:300–302

    Article  ADS  Google Scholar 

  • Korda P, Spalding G, Dufresne E, Grier D (2002) Nanofabrication with holographic optical tweezers. Rev Sci Instrum 73:1956–1957

    Article  ADS  Google Scholar 

  • Leach J, Wulff K, Sinclair G, Jordan P, Courtial J, Thomson L, Gibson G, Karunwi K, Cooper J, Laczik ZJ, Padgett M (2006) Interactive approach to optical tweezers control. Appl Opt 45: 897–903

    Article  ADS  Google Scholar 

  • Liesener J, Reicherter M, Haist T, Tiziani H (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185:77–82

    Article  ADS  Google Scholar 

  • Mas J, Roth M, Martin-Badosa E, Montes-Usategui M (2011) Adding functionalities to precomputed holograms with random mask multiplexing in holographic optical tweezers. Appl Opt 50:1417–1424

    Article  ADS  Google Scholar 

  • Megelski S, Calzaferri G (2001) Tuning the size and shape of zeolite L-based inorganic-organic host-guest composites for optical antenna systems. Adv Funct Mater 11:277–286

    Article  Google Scholar 

  • Meiners J, Quake S (1999) Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys Rev Lett 82:2211–2214

    Article  ADS  Google Scholar 

  • Melville H, Milne G, Spalding G, Sibbett W, Dholakia K, McGloin D (2003) Optical trapping of three-dimensional structures using dynamic holograms. Opt Express 11:3562–3567

    Article  ADS  Google Scholar 

  • Min T, Mears P, Chubiz L, Rao C, Golding I, Chemla Y (2009) High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat Methods 6:831–835

    Article  Google Scholar 

  • Miyamoto K (1961) The phase Fresnel lens. J Opt Soc Am 51:17–20

    Article  MathSciNet  ADS  Google Scholar 

  • Moh K, Lee W, Cheong W, Yuan X (2005) Multiple optical line traps using a single phase-only rectangular ridge. Appl Phys B 80:973–976

    Article  ADS  Google Scholar 

  • Montes-Usategui M, Pleguezuelos E, Andilla J, Martin-Badosa E (2006) Fast generation of holographic optical tweezers by random mask encoding of Fourier components. Opt Express 14:2101–2107

    Article  ADS  Google Scholar 

  • Neuman K, Chadd E, Liou G, Bergman K, Block S (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863

    Article  Google Scholar 

  • O’Neil A, Padgett M (2002) Rotational control within optical tweezers by use of a rotating aperture. Opt Lett 27:743–745

    Article  ADS  Google Scholar 

  • Ordal G, Goldman D (1975) Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Science 189:802–805

    Article  ADS  Google Scholar 

  • Paterson L, MacDonald M, Arlt J, Sibbett W, Bryant P, Dholakia K (2001) Controlled rotation of optically trapped microscopic particles. Science 292:912–914

    Article  ADS  Google Scholar 

  • Polin M, Ladavac K, Lee S, Roichman Y, Grier D (2005) Optimized holographic optical traps. Opt Express 13:5831–5845

    Article  ADS  Google Scholar 

  • Purcell E (1977) Life at low reynolds-number. Am J Phys 45:3–11

    Article  ADS  Google Scholar 

  • Reichert M, Stark H (2004) Hydrodynamic coupling of two rotating spheres trapped in harmonic potentials. Phys Rev E: Stat Nonlinear Soft Matter Phys 69:031407

    Article  ADS  Google Scholar 

  • Roichman Y, Grier D (2005) Holographic assembly of quasicrystalline photonic heterostructures. Opt Express 13:5434–5439

    Article  ADS  Google Scholar 

  • Rosenberg E, Ron E (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biot 52:154–162

    Article  Google Scholar 

  • Ruiz A, Li H, Calzaferri G (2006) Organizing supramolecular functional dye-zeolite crystals. Angew Chem Int Ed 45:5282–5287

    Article  Google Scholar 

  • Sato S, Ishigure M, Inaba H (1991) Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser-beams. Electron Lett 27:1831–1832

    Article  Google Scholar 

  • Segur J, Oberstar H (1951) Viscosity of glycerol and its aqueous solutions. Ind Eng Chem 43:2117–2120

    Article  Google Scholar 

  • Simpson SH, Hanna S (2011) Optical trapping of microrods: variation with size and refractive index. J Opt Soc Am A 28:850–858

    Article  ADS  Google Scholar 

  • Sinclair G, Jordan P, Courtial J, Padgett M, Cooper J, Laczik Z (2004) Assembly of 3-dimensional structures using programmable holographic optical tweezers. Opt Express 12:5475–5480

    Article  ADS  Google Scholar 

  • Sinclair G, Jordan P, Leach J, Padgett M, Cooper J (2004) Defining the trapping limits of holographical optical tweezers. J Mod Opt 51:409–414

    Article  ADS  Google Scholar 

  • Sokolov A, Apodaca M, Grzybowski B, Aranson I (2010) Swimming bacteria power microscopic gears. Proc Natl Acad Sci U.S.A. 107:969–974

    Article  ADS  Google Scholar 

  • Tanaka Y, Hirano K, Nagata H, Ishikawa M (2007) Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping. Electron Lett 43:412–414

    Article  Google Scholar 

  • Tanaka Y, Kawada H, Hirano K, Ishikawa M, Kitajima H (2008) Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques. Opt Express 16:15115–15122

    Article  ADS  Google Scholar 

  • Woerdemann M, Gläsener S, Hörner F, Devaux A, De Cola L, Denz C (2010) Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers. Adv Mater 22:4176–4179

    Article  Google Scholar 

  • Woerdemann M, Alpmann C, Hoerner F, Devaux A, De Cola L, Denz C (2010) Optical control and dynamic patterning of zeolites. SPIE Proc 7762:77622E

    Article  ADS  Google Scholar 

  • Woerdemann M, Devaux A, De Cola L, Denz C (2010) Managing hierarchical supramolecular organization with holographic optical tweezers. OPN (Optics in 2010) 21:40

    Google Scholar 

  • Woerdemann M, Alpmann C, Denz C (2012) Optical imaging and metrology, chapter three-dimensional particle control by holographic optical tweezers. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Wolgemuth C (2008) Collective swimming and the dynamics of bacterial turbulence. Biophys J 95:1564–1574

    Article  Google Scholar 

  • Zwick S, Haist T, Warber M, Osten W (2010) Dynamic holography using pixelated light modulators. Appl Opt 49:F47–F58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Woerdemann .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woerdemann, M. (2012). Holographic Optical Tweezers. In: Structured Light Fields. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29323-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29323-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29322-1

  • Online ISBN: 978-3-642-29323-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics