Skip to main content

Ince-Gaussian Beams for the Optical Organisation of Microparticles

  • Chapter
  • First Online:
Structured Light Fields

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Self-similar beams are by far the most prominent class of laser beams as they are natural solutions to the resonator problem and hence widely available as output of commercial and research lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The use of “vertical” and “horizontal” is connected with the definition of the elliptical coordinates in Sect. 6.1. For experimental applications the system of coordinates can, of course, be rotated by any arbitrary angle.

  2. 2.

    In the following, we assume that the qualitative behaviour of strongly focused IG beams is reasonably described within the paraxial regime. A brief discussion on the validity of this approximation in optical trapping scenarios is provided in Sect. 2.4.

  3. 3.

    Typical microparticles like silica spheres and also silicate glass surfaces exhibit negative surface charges in aqueous solutions (Behrens and Grier 2001). If the solvent has very low ionic strength, like pure water, the repelling forces due to the electric double layers (Israelachvili 2011) usually maintain a separation between particles and surface and thus suppress other short-range interactions and the particles are free to move along the surface.

  4. 4.

    The experiments discussed in this section were performed in collaboration with Ms Christina Alpmann within the framework of her diploma thesis (Alpmann 2010) and have resulted in a joint publication (Woerdemann et al. 2011).

References

  • Allen L, Beijersbergen M, Spreeuw R, Woerdman J (1992) Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys Rev A 45:8185–8189

    Article  ADS  Google Scholar 

  • Alpmann C (2010) Maßgeschneiderte Lichtfelder zur mehrdimensionalen Manipulation von Materie in optischen Pinzetten. Master’s thesis, Westfälische Wilhelms-Universität Münster

    Google Scholar 

  • Arscott F (1964) Periodic differential equations. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Bandres M, Gutierrez-Vega J (2004) Ince Gaussian beams. Opt Lett 29:144–146

    Article  ADS  Google Scholar 

  • Bandres M, Gutierrez-Vega J (2004) Ince-Gaussian modes of the paraxial wave equation and stable resonators. J Opt Soc Am A 21:873–880

    Article  ADS  Google Scholar 

  • Basistiy I, Soskin M, Vasnetsov M (1995) Optical wave-front dislocations and their properties. Opt Commun 119:604–612

    Article  ADS  Google Scholar 

  • Behrens S, Grier D (2001) The charge of glass and silica surfaces. J Chem Phys 115:6716–6721

    Article  ADS  Google Scholar 

  • Bentley J, Davis J, Bandres M, Gutierrez-Vega J (2006) Generation of helical Ince-Gaussian beams with a liquid-crystal display. Opt Lett 31:649–651

    Article  ADS  Google Scholar 

  • Dholakia K, Zemanek P (2010) Colloquium: gripped by light: optical binding. Rev Mod Phys 82:1767

    Article  ADS  Google Scholar 

  • Heckenberg N, McDuff R, Smith C, White A (1992) Generation of optical phase singularities by computer-generated holograms. Opt Lett 17:221–223

    Article  ADS  Google Scholar 

  • Ince E (1923) A linear differential equation with periodic coefficients. Proc London Math Soc 23:56–74

    Article  MathSciNet  Google Scholar 

  • Israelachvili J (2011) Intramolecular and surface forces. Academic, London

    Google Scholar 

  • Kennedy S, Szabo M, Teslow H, Porterfield J, Abraham E (2002) Creation of Laguerre-Gaussian laser modes using diffractive optics. Phys Rev A 66:043801

    Article  ADS  Google Scholar 

  • Machavariani G, Davidson N, Hasman E, Blit S, Ishaaya A, Friesem A (2002) Efficient conversion of a Gaussian beam to a high purity helical beam. Opt Commun 209:265–271

    Article  ADS  Google Scholar 

  • Mohanty S, Mohanty K, Berns M (2008) Organization of microscale objects using a microfabricated optical fiber. Opt Lett 33:2155–2157

    Article  ADS  Google Scholar 

  • Saleh B, Teich M (2008) Grundlagen der Photonik. Wiley-VCH, Berlin

    Google Scholar 

  • Sato S, Ishigure M, Inaba H (1991) Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser-beams. Electron Lett 27:1831–1832

    Article  Google Scholar 

  • Schweiger G, Nett R, Weigel T (2007) Microresonator array for high-resolution spectroscopy. Opt Lett 32:2644–2646

    Article  ADS  Google Scholar 

  • Soria S, Berneschi S, Brenci M, Cosi F, Conti G, Pelli S, Righini G (2011) Optical microspherical resonators for biomedical sensing. Sensors 11:785–805

    Article  Google Scholar 

  • Whyte G, Courtial J (2005) Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg Saxton algorithm. New J Phys 7:117–128

    Article  Google Scholar 

  • Woerdemann M, Alpmann C, Denz C (2011) Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams. Appl Phys Lett 98:111101

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Woerdemann .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woerdemann, M. (2012). Ince-Gaussian Beams for the Optical Organisation of Microparticles. In: Structured Light Fields. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29323-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29323-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29322-1

  • Online ISBN: 978-3-642-29323-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics