Skip to main content

Evolutionary Data Selection for Enhancing Models of Intraday Forex Time Series

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7248))

Included in the following conference series:

Abstract

The hypothesis in this paper is that a significant amount of intraday market data is either noise or redundant, and that if it is eliminated, then predictive models built using the remaining intraday data will be more accurate. To test this hypothesis, we use an evolutionary method (called Evolutionary Data Selection, EDS) to selectively remove out portions of training data that is to be made available to an intraday market predictor. After performing experiments in which data-selected and non-data-selected versions of the same predictive models are compared, it is shown that EDS is effective and does indeed boost predictor accuracy. It is also shown in the paper that building multiple models using EDS and placing them into an ensemble further increases performance. The datasets for evaluation are large intraday forex time series, specifically series from the EUR/USD, the USD/JPY and the EUR/JPY markets, and predictive models for two primary tasks per market are built: intraday return prediction and intraday volatility prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breedon, F., Ranaldo, A.: Intraday Patterns in FX Returns and Order Flow. Swiss National Bank Working Papers 2011-4 (2010)

    Google Scholar 

  2. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Cano, J., Herrera, F., Lozano, M.: Using Evolutionary Algorithms as Instance Selection for Data Reduction in KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7(6), 561–575 (2003)

    Article  Google Scholar 

  4. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  5. Larkin, F., Ryan, C.: Modesty Is the Best Policy: Automatic Discovery of Viable Forecasting Goals in Financial Data. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 202–211. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Luke, S.: Essentials of Metaheuristics, Lulu (2009), http://cs.gmu.edu/~sean/book/metaheuristics/

  7. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods – Support Vector Learning. MIT Press (1998)

    Google Scholar 

  8. Pi Trading Corporation, http://pitrading.com/

  9. Sewell, M.: Characterization of Financial Time Series. Research Note RN/11/01, Dept. of Computer Science UCL (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mayo, M. (2012). Evolutionary Data Selection for Enhancing Models of Intraday Forex Time Series. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2012. Lecture Notes in Computer Science, vol 7248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29178-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29178-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29177-7

  • Online ISBN: 978-3-642-29178-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics