Skip to main content

Early Spectroscopic Studies of Isotopes

  • Chapter
  • First Online:
Isotopes in Condensed Matter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 162))

  • 1336 Accesses

Abstract

The interpretation of atomic isotope shifts relies partly on the knowledge of nuclear structure. Conversely it can provide some information on the structure nuclei. This relation between the two fields has been for many years the main reason for the interest in isotope shifts of optical (electronic) transition (see, e.g. reviews and monographs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The standard shift calculated on the basis of \({\langle }\)r\(^{2}\) \(\rangle ^{1/2}\) dependence can be corrected by dividing by the quantity [1 + 1.2 \(\cdot \) 10\(^{-5}\)Z\(^{2}\)]. This correction takes into account the effect of \(\langle \)r\(^{4}\rangle \) and \(\langle \)r \(^{6}\rangle \) terms and is based on the results of Seltzer [36].

References

  1. A.P. Striganov, Ju.P. Donzov, Isotope effect in atomic spectra, Usp. Fiz. Nauk 55, 315–330 (1955) (in Russian)

    Google Scholar 

  2. I.I. Sobel’man, Introduction in Theory of Atomic Spectra, 2nd edn. (Science, Moscow, 1977) (in Russian)

    Google Scholar 

  3. S.E. Frish, Optical Spectra of Atoms ( Moscow - Leningrad, Fizmatgiz, 1963). (in Russian)

    Google Scholar 

  4. W.H. King, Isotope Shift in Atomic Spectra (Plenum Press, New York, 1984)

    Google Scholar 

  5. R.C. Barrett, Nuclear charge distributions. Rep. Prog. Phys. 37, 1–54 (1974)

    Article  CAS  Google Scholar 

  6. D.F. Jackson, Nuclear sizes and the optical model, Rep. Prog. Phys., 37, 55–146 (1974)

    Google Scholar 

  7. R.C. Barrettt, D.C. Jackson, Nuclear Sizes and Structure (Clarendon Press, Oxford, 1977)

    Google Scholar 

  8. M. Waraquier, J. Morean, K. Heyde et al., Rearrangement effects in shell model calculations using density - dependent interactions. Phys. Reports 148, 249–291 (1987)

    Article  Google Scholar 

  9. K. Heilig, A. Steudel, Changes in mean square nuclear charge radii from optical isotope shift. At. Data Nucl. Data Tables 14, 613 (1974)

    Article  CAS  Google Scholar 

  10. H.W. Brandt, K. Heilig, A. Steudel, Optical isotope shift measurements of \(^{40, \text{42,} \text{43,} \text{44,} \text{48}}\)Ca by use of enriched isotopes in atomic beam. Phys. Lett. A64, 29–30 (1977)

    Google Scholar 

  11. F. Aufmuth, K. Heilig, A. Steudel, Changes in mean square nuclear charge radii from optical isotope shift. At. Data Nucl. Data Tables 37, 455–490 (1987)

    Article  CAS  Google Scholar 

  12. A. Djouadi, The dichotomy of electroweak symmetry breaking: The Higgs boson and Standard model. Phys. Reports 457, 1–216 (2008)

    Article  CAS  Google Scholar 

  13. D.N. Stacey, Isotope shift and nuclear charge distributions. Rep. Prog. Phys. 29, 171–215 (1966)

    Article  CAS  Google Scholar 

  14. J. Bausche, R. - J. Champeau, Recent progress in the theory of atomic isotope shift, Adv. At. Mol. Physics 12, 39–86 (1976)

    Google Scholar 

  15. E.N. Ramsden, A-Level Chemistry (Hull, Stanley Thornes Publishers, 1985; L.J. Malone, Basic Concepts of Chemistry (New York, Wiley, 2003)

    Google Scholar 

  16. V.I. Kogan, The discovery of the Planck constant: "X - ray" analysis of the scientific situation (1900). Overlooked opportunities of choice of the Second Step (to the centenary of the First Step of quantum theory), Usp. Fiz. Nauk 170, 1351–1357 (2000) (in Russian)

    Google Scholar 

  17. E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1953)

    Google Scholar 

  18. Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge University Press, Cambri dge, 2006)

    Google Scholar 

  19. E.V. Shpol’sky, Atomic Physics (Fiz. - Mat. Lit, Part One (Moscow, 1974). (in Russian)

    Google Scholar 

  20. G. Herzberg, Molecular Spectra and Molecular Structure (D. van Nostranr, New York, 1951)

    Google Scholar 

  21. E.B. Wilson, Jr, J.C. Decius, P.C. Gross, Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra (New York, McGraw-Hill, 1955)

    Google Scholar 

  22. M.A. Eliashevich, Atomic and Molecular Spectroscopy ( Moscow, Fizmatgiz, 1962). (in Russian)

    Google Scholar 

  23. V.G. Plekhanov, Manifestation and Origin of the Isotope Effect, ArXiv:gen. phys/0907.2024

    Google Scholar 

  24. A.P. Striganov, Isotope spectral analysis, Usp. Fiz. Nauk 58, 365–414 (1956) (in Russian)

    Google Scholar 

  25. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (New York, Pergamon Press, 1977)

    Google Scholar 

  26. A. Huber, Th Udem, B. Gross et al., Hydrogen - deuterium 1s–2s isotope shift and the structure of the deuteron. Phys. Rev. Lett. 80, 468–471 (1998)

    Google Scholar 

  27. Th. Udem, B. Gross, M. Kourogi, et al., Phase coherent measurement of the hydrogen 1s–2s transition frequency with an optical frequency interval divider chain, Phys. Rev. Lett., 79, 2646–2649 (1997)

    Google Scholar 

  28. D.S. Hughes, C. Eckart, The effect of the motion of the nucleus on the spectra of Li I and Li II. Phys. Rev. 36, 694–698 (1930)

    Article  CAS  Google Scholar 

  29. J.P. Vinti, Isotope shift in magnesium. Phys. Rev. 56, 1120–1132 (1939)

    Article  CAS  Google Scholar 

  30. J. Rosenthal, G. Breit, The isotpe shift in hyperfine structure. Phys. Rev. 41, 459–470 (1932)

    Article  CAS  Google Scholar 

  31. G. Raxah, Isotopic displacement and hyperfine structure. Nature (London) 129, 723–724 (1932)

    Article  Google Scholar 

  32. P. Brix, H. Kopferman, Isotope shift studies of nuclei. Rev. Mod. Phys. 30, 517–520 (1958)

    Article  Google Scholar 

  33. D. Goorvitch, S.P. Davis, H. Kleinman, Isotope shift and hyperfine structure of the neutron-eficient thallium isotopes. Phys. Rev. 188, 1897–1904 (1969)

    Article  CAS  Google Scholar 

  34. A. - M. Martensson - Pendrill, D.S. Gough and P. Hannaford, Isotope shifts and hyperfine structure in the 369.4 nm 6s–6p\(_{1/2}\) resonance line of single ionised ytterbium, Phys. Rev. A49, 3351–3365 (1994)

    Google Scholar 

  35. U. Bersinsh, M. Gustaffson, D. Hanstrop, Isotope shift in the electron affinity of chlorine, ArXiv, phys/9804028

    Google Scholar 

  36. E.C. Seltzer, K X - ray isotope shifts. Phys. Rev. 188, 1916–1921 (1969)

    Article  CAS  Google Scholar 

  37. E.K. Broch, Arch. Math. Natur. 48, 25–32 (1945), cited in [36]

    Google Scholar 

  38. H. Haken, HCh. Wolf, The Physics of Atoms and Quanta (Springer, Berlin, 2005)

    Google Scholar 

  39. P.L. Lee and Boehm, X - ray isotope shofts and variations of nuclear charge radii in isotopes, Phys. Rev. C8, 819–826 (1973)

    Google Scholar 

  40. P.L. Lee, F. Boehm, A.A. Hahn, Variations of nuclear charge radii in mercury isotopes with A = 198, 199, 200, 201, 202 and 204 from x - ray isotope shifts. Phys. Rev. C17, 1859–1861 (1978)

    Google Scholar 

  41. V.G. Plekhanov, Isotopetronics---new direction of nanoscience, ArXiv: phys/1007.5386

    Google Scholar 

  42. V.G. Plekhanov, Elementary excitations in isotope - mixed crystals. Phys. Reports 410, 1–235 (2005)

    Article  CAS  Google Scholar 

  43. M.A. Eliashevich, The mechanics of molecular vibrarions. Usp. Fiz. Nauk 48, 482–544 (1946)

    Google Scholar 

  44. A. Anderson (ed.), The Raman Effect (Marcell Dekker Inc., New York, 1973)

    Google Scholar 

  45. D.A. Long, Raman Spectroscopt (MsGraw-Hill Inc., UK, 1977)

    Google Scholar 

  46. J.G. Grasselli, M. Snavely, B.J. Bulkin, Chemical Application of Raman Spectroscopy (Wiley, New York, 1981)

    Google Scholar 

  47. H.A. Shymanski (ed.), Raman Spectroscopy (Plenum Press, New York, 1967)

    Google Scholar 

  48. V.G. Plekhanov, Fundamentals and applications of isotope effect in modern technology. J. Nucl. Sci. and Technol. (Japan) 43, 375–381 (2006)

    Article  CAS  Google Scholar 

  49. J.G. Valatin, The isotope effect of the potential function of molecular states. Phys. Rev. 73, 346–347 (1948)

    Article  Google Scholar 

  50. C.N. Banwell, Fundamentala of Molecular Spectroscopy (McGraw - Hill Inc., New York - London, 1983)

    Google Scholar 

  51. V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Prog. Mater. Sci. 51, 287–486 (2006)

    Article  CAS  Google Scholar 

  52. S. Bhagavantam, T. Venkataraudu, Theory of Groups and its Applications to Physical Problems (Adha University Press, Waltair, 1951)

    Google Scholar 

  53. I. Danielewicz - Ferchmin and A.B. Ferchmin, Water at ions, biomolecules and charged surfaces, Phys. Chem. Liquids 42, 1–36 (2004)

    Google Scholar 

  54. G.E. Walrafen, Raman spectral studies of water structure. J. Chem. Phys. 40, 3249–3256 (1964)

    Article  CAS  Google Scholar 

  55. M.F. Chaplin, Models of water, see http://www.lsbu.ac.uk/water/models.html: A proposal for the structuring of water, Biophys. Chem. 83, 211–221 (2000)

  56. H.W. Kroto, J.R. Heath, S.C. O’Brien et al., C\(_{60}\): Buckminsterfullerene. Nature (London) 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  57. W. Kratschmer, B. Fositropolus, D.R. Hoffman, The infrared and ultraviolet absorption spectra of laboratory - produced carbon dust: evidence for the presence of the C\(_{60}\) molecule. Chem. Phys. Lett. 170, 167–170 (1990)

    Article  Google Scholar 

  58. J. Menendez and J.B. Page, Vibrational Spectroscopy of C\(_{60}\), in, M. Cardona and G. Guntherodt, eds, Light Scattering in Solids, VIII (Berlin - Heidelberg, Springer, 2000) (Vol. 76 in Topics in Applied Physics)

    Google Scholar 

  59. K. Mauersberger, Measurement of heavy ozone in the stratosphere. Geophys. Res. Lett. 8, 935–937 (1981)

    Article  CAS  Google Scholar 

  60. M.H. Thiemens, J.E. Heidenreich, The mass - independent fractionation of oxygen: A novell isotope effect and its possible cosmochemical implications. Science 219, 1073–1075 (1983)

    Article  CAS  Google Scholar 

  61. E.K. Thornton and E.R. Thornton, Origin and interpretation of isotope effects, in, C.J. Collins and N.S. Bowman, eds, Isotope Effects in Chemical Reactions (New York, van Nostrand Reinhold Co., 1970)

    Google Scholar 

  62. J. Biegelsen, M.W. Lee and F, Mandel, Equilibrium isotope effect, Ann. Rev. Phys. Chem. 24, 407–440 (1973)

    Google Scholar 

  63. R.E. Weston, Anomalous or mass-independent isotope effect. Chem. Rev. 99, 2115–2180 (1973)

    Article  Google Scholar 

  64. M.H. Thiemens, Mass - independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–346 (1999)

    Article  CAS  Google Scholar 

  65. K. Mauersberger, D. Krankowsky, C. Janssen et al., Assessment of the ozone isotope effect. Adv. At. Mol. and Optical Physics 50, 1–54 (2005)

    Article  CAS  Google Scholar 

  66. H.S. Johnston, Gas Phase Reaction Rate Theory (The Ronald Press Company, New York, 1966)

    Google Scholar 

  67. R.E. Weston Jr, When is an isotope effect non - mass dependent. J. Nucl. Sci. and Technol. (Japan) 43, 295–299 (2006)

    Article  CAS  Google Scholar 

  68. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–652 (1957)

    Article  Google Scholar 

  69. T.L. Wilson, Isotopes in the interstellar medium and circumstellar envelopes. Rep. Prog. Phys. 62, 143–185 (1999)

    Article  CAS  Google Scholar 

  70. G. Wallerstein, I. Jhen Jr, P. Parker et al., Synthesis of the elements in stars: forty years in progress. Rev. Mod. Phys. 69, 995–1084 (1997)

    Article  CAS  Google Scholar 

  71. S. Esposito, Primordial Nucleosynthesis: Accurate Prediction for Light Element Abundances, ArXiv:astro-ph/ 990441

    Google Scholar 

  72. S.M. Anderson, D. Hulsebusch, K. Mauersberger, Suprising rate coefficients for four isotopic variants of O + O\(_{2}\) + M. J. Chem. Phys. 107, 5385–5392 (1997)

    Article  CAS  Google Scholar 

  73. Ch. Janssen, J. Guenther and K. Mauersberger, Relative formation rates of \(^{50}\)O\(_{3}\) and \(^{52}\)O\(_{3}\)in \(^{16}\)O - \(^{18}\)O, J. Chem. Phys., 111, 7179–7182 (1999)

    Google Scholar 

  74. K. Mauersberger, K. Erbacher, D. Krankowsky et al., Ozone isotope enrichment: isotopomer-specific rate coefficients. Science 283, 370–373 (1999)

    Article  CAS  Google Scholar 

  75. B.C. Hathorn, R.A. Marcus, An intramolecular theory of the mass - independent isotope effect for ozone. I. J. Chem. Phys. 111, 4087–4100 (1999)

    Article  CAS  Google Scholar 

  76. B.C. Hathorn, R.A. Marcus, An intramolecular theory of the mass - independent isotope effect for ozone. II. Numerical implementation at low pressures using a loose transition state. J. Chem. Phys. 113, 9497–9509 (2000)

    Article  CAS  Google Scholar 

  77. B.C. Hathorn, R.A. Marcus, Estimation of vibrational frequencies and vibrational densities of states in isotopically substituted nonlinear triatomic molecules. J. Phys. Chem. A105, 5586–5589 (2001)

    Article  Google Scholar 

  78. Y.Q. GaoMarcus, R.A. Marcus, On the theory of the strange and unconventional isotopic effects in ozone formation. J. Chem. Phys. 116, 137–154 (2002)

    Article  Google Scholar 

  79. Y.Q. Gao, W. - Ch. Chenc and R.A. Marcus, A theoretical study of zone isotopic effects using a modified ab initio potential energy surface. J. Chem. Phys. 117, 1536–1543 (2002)

    Article  CAS  Google Scholar 

  80. D. Babikov, B.K. Kendrick, R.B. Walker et al., Quantum origin of an anomalous isotope effect in ozone formation. Chem. Phys. Lett. 272, 686–691 (2002)

    Google Scholar 

  81. D. Babikov, B.K. Kendrick, R.B. Walker et al., Metastable states of ozone calculated on an accurate potential energy surface. J. Chem Phys. 118, 6298–6307 (2003)

    Article  CAS  Google Scholar 

  82. D. Babikov, B.K. Kendrick, R.B. Walker, et al., Formation of ozone - metastable states and anomalous isotope effect,J. Chem Phys. , 119, 2577–2589 (2003)

    Google Scholar 

  83. J.R. Hulston, H.G. Thode, Variations in the S\(^{33}\), S\(^{34}\), and S\( ^{36}\) contents of meteorities and their relation to chemical and nuclear effects. J. Geophys. Res. 70, 3475–3484 (1965)

    Article  CAS  Google Scholar 

  84. R.N. Clayton, L. Grossman, T.K. Mayeda, A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488 (1973)

    Article  CAS  Google Scholar 

  85. G.I. Gellene, An explanation for symmetry - induced isotopic fractionation in ozone, Science 274, 1344–1346 (1996)

    Google Scholar 

  86. K.S. Grifith and G.I. Gellene, Symmetry restriction in diatom - diatom reactions: II Nonmass dependent isotope effects in the formation of O\(_{4}^{+}\), Science, 96, 4403 4411 (1992)

    Google Scholar 

  87. J.J. Valentini, Mass-indepenent isotopic fractionation in nonadiabatic molecular collisions. J. Chem Phys. 86, 6757–6765 (1987)

    Article  CAS  Google Scholar 

  88. J. Sehested, O.J. Nielsen, H. Egsgaard et al., First kinetic study of isotopic enrichment of ozone. J. Geophys. Res. 100, 20979–20982 (1995)

    Article  Google Scholar 

  89. J. Sehested, O.J. Nielsen, H. Egsgaard, et al., Kinetic study of the formation of isotopically substituted ozone in argon, J. Geophys. Res., 103, 3545–3552 (1998)

    Google Scholar 

  90. V.G. Plekhanov, The enigma of the mass, ArXiv, phys./0906.4408

    Google Scholar 

  91. R.V. Ambartzumian, V.S. Letokhov, Two - steps selective photoionization rubidium by laser radiation, JETP Lett. (Moscow) 13, 305–308 (1971) (in Russian)

    Google Scholar 

  92. S.A. Tussio, J.W. Durbin, O.G. Peterson, Two-step selective photoionization of U-235 in uranium vapor. J. Quant. Electron. QE - 10, 790–797 (1976)

    Google Scholar 

  93. J.S. Janes, I. Itzkan, C.T. Pika, Two - photon laser isotope separation of U-235 in uranium vapor. J. Quant. Elextron. QE - 12, 11–117 (1978)

    Google Scholar 

  94. P.T. Greenland, Laser isotope separation. Contemp. Phys. 31, 405–424 (1990)

    Article  CAS  Google Scholar 

  95. P.R. Rao, Laser isotope separation of uranium. Current Science 85, 615–633 (2003)

    CAS  Google Scholar 

  96. M. Gilbert, J.M. Weulersse, P. Isnard et al., Multiphonon dissociation of UF\(_{6}\) at 16 \(\mu \)m in supersonic jets. SPIE 669, 10–17 (1986)

    Article  CAS  Google Scholar 

  97. V.Ju. Baranov (ed.), Isotopes, Vol I-II, Moscow, Fizmatlit, 2005 (in Russian)

    Google Scholar 

  98. Laser Applications: Isotope Separation, Lawrence Livermore National Laboratory, TGB - 067, 1984

    Google Scholar 

  99. J.L. Lyman, Laser Spectroscopy and its Applications, L.J. Radziemski (ed.) New York, Marcel Dekker Inc., 1987

    Google Scholar 

  100. J.W. Kelly, A review of laser isotope separation of uranium hexafluoride, Australian Atomic Energy Comission, ISBN 0642597723, 1983

    Google Scholar 

  101. R.M. Feinberg, R.S. Hargrove, Overview of uranium atomic vapor laser isotope separation, UCRL - ID - 114671, 1993

    Google Scholar 

  102. C.B. Moore, Alternative Applications of Atomic Vapor Laser Isotope Separation Technology (National Academic Press, Washington D.C., 1991)

    Google Scholar 

  103. R.L.R. Murray, Nuclear Energy: An Introduction and Applications (Woburn, MA, Butterworth-Heineman, 2001), pp. 99–113

    Google Scholar 

  104. P.A. Bokhan, V.V. Buchanov, N.V. Fateev et al., Laser Isotope Separation in Atomivc Vapor (Wiley - VCH - Verlag GmbH& Co., Weinheim, 2006)

    Book  Google Scholar 

  105. A.R. Striganov, G.A. Odintzova, Tables of the Spectral Lines of Atoms and Ions (Energoatomizdat, Moscow, 1982). (in Russian)

    Google Scholar 

  106. Dye Lasers, E. - P. Sheffer (ed.), Moscow, MIr, 1976 (in Russian)

    Google Scholar 

  107. Handbook of Lasers, A.M. Prokhorov (ed.), Vol. 1, Moscow, Sov’et Radio, 1978 (in Russian)

    Google Scholar 

  108. P.P. Pronko, P.A. VanRompay, Z. Zhang et al., Isotope enrichment in laser - ablation plumes and commensurately deposited thin films. Phys. Rev. 83, 2596–2599 (1999)

    CAS  Google Scholar 

  109. M. Joseph, P. Monoravi, Boron isotope enrichment in nanosecond pulsed laser-ablation pume. Appl. Phys. A76, 153–156 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plekhanov, V. (2013). Early Spectroscopic Studies of Isotopes. In: Isotopes in Condensed Matter. Springer Series in Materials Science, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28723-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28723-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28722-0

  • Online ISBN: 978-3-642-28723-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics