Skip to main content

A new automated method versus continuous positive airway pressure method for measuring pressure–volume curves in patients with acute lung injury

  • Chapter
  • First Online:
Applied Physiology in Intensive Care Medicine 1

Abstract

Objective: To compare pressure–volume (P–V) curves obtained with the Galileo ventilator with those obtained with the CPAP method in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Design: Prospective, observational study. Setting: General critical care center. Patients and participants: Patients with ALI/ARDS and receiving mechanical ventilation. Interventions: Pressure–volume curves were obtained in random order with the CPAP technique and with the software PV Tool–2 (Galileo ventilator). Measurements and results: In ten consecutive patients, airway pressure was measured by a pressure transducer and changes in lung volume were measured by respiratory inductive plethysmography. P–V curves were fitted to a sigmoidal equation with a mean R2 of 0.994 ± 0.003. Intraclass correlation coefficients were all[0.75 (P\0.001 at all pressure levels). Lower (LIP) and upper inflection (UIP), and deflation maximum curvature (PMC) points calculated from the fitted variables showed a good correlation between methods with intraclass correlation coefficients of 0.98 (0.92, 0.99), 0.92 (0.69, 0.98), and 0.97 (0.86, 0.98), respectively (P\0.001 in all cases). Bias and limits of agreement for LIP (0.51 ± 0.95 cmH2O; -1.36 to 2.38 cmH2O), UIP (0.53 ± 1.52 cmH2O; -2.44 to 3.50 cmH2O), and PMC (-0.62 ± 0.89 cmH2O; -2.35 to 1.12 cmH2O) obtained with the two methods in the same patient were clinically acceptable. No adverse effects were observed. Conclusion: The PV Tool-2 built into the Galileo ventilator is equivalent to the CPAP method for tracing static P–V curves of the respiratory system in critically ill patients receiving mechanical ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lu Q, Rouby JJ (2000) Measurement of pressure volume curves in patients on mechanical ventilation: methods and significance. Crit Care 4:91–100

    Article  PubMed  CAS  Google Scholar 

  2. Amato MBP, Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 38:347–354

    Article  Google Scholar 

  3. Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34:1311–1318

    Article  PubMed  Google Scholar 

  4. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  5. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166

    Article  PubMed  CAS  Google Scholar 

  6. Roupie E, Dambrosio M, Sevillo G, Mentec H, el Atrous S, Beydon L, Brun-Buisson C, Lemaire F, Brochard L (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:121–128

    PubMed  CAS  Google Scholar 

  7. Albaiceta GM, Luyando LH, Parra D, Menendez R, Calvo J, Pedreira PR, Taboada F (2005) Inspiratory vs expiratory pressure–volume curves to set end-expiratory pressure in acute lung injury. Intensive Care Med 31:1370–1378

    Article  PubMed  Google Scholar 

  8. DiRocco JD, Carney DE, Nieman GF (2007) Correlation between alveolar recruitment/derecruitment and inflection points on the pressure–volume curve. Intensive Care Med 33:1204–1211

    Article  PubMed  Google Scholar 

  9. Bayle F, Guerin C, Debord S, Badet M, Lemasson S, Poupelin JC, Richard JC (2006) Assessment of airway closure from deflation lung volume–pressure curve: sigmoidal equation revisited. Intensive Care Med 32:894–898

    Article  PubMed  Google Scholar 

  10. Albaiceta GM, Piacentini E, Villagra A, Lopez-Aguilar J, Taboada F, Blanch L (2003) Application of continuous positive airway pressure to trace static pressure–volume curves of the respiratory system. Crit Care Med 31:2514–2519

    Article  PubMed  Google Scholar 

  11. Piacentini E, Wysocki M, Ll Blanch (2007) Validation of a new commercially available method to measure static-pressure volume curves at the bedside. Intensive Care Med 33(S2):207

    Google Scholar 

  12. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Le Call JR, Morris A, Spragg R, The Consensus Committee (1994) The American–European consensus conference on ARDS. Definition, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  13. Decailliot F, Demoule A, Maggiore SM, Jonson B, Duvaldestin P, Brochard L (2006) Pressure–volume curves with and without muscle paralysis in acute respiratory distress syndrome. Intensive Care Med 32:1322–1328

    Article  PubMed  Google Scholar 

  14. Venegas JG, Harris RS, Simon BA (1998) A comprehensive equation the pulmonary pressure volume curve. J Appl Physiol 84:389–395

    PubMed  CAS  Google Scholar 

  15. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8476:307–310

    Article  Google Scholar 

  16. Bartko JJ (1966) The intraclass correlation coefficient as a measure of reliability. Psychol Rep 19:3– 11

    Article  PubMed  CAS  Google Scholar 

  17. Chiumello D, Carlesso E, Aliverti A, Dellaca RL, Pedotti A, Pelosi P, Gattinoni L (2007) Effects of volume shift on the pressure–volume curve of the respiratory system in ALI/ARDS patients. Minerva Anestesiol 73:109–118

    PubMed  CAS  Google Scholar 

  18. Fernandez R, Blanch L, Artigas A (1993) Inflation static pressure–volume curves of the total respiratory system determined without any instrumentation other than the mechanical ventilator. Intensive Care Med 19:33–38

    Article  PubMed  CAS  Google Scholar 

  19. Servillo G, Svantesson C, Beydon L, Roupie E, Brochard L, Lemaire F, Jonson B (1997) Pressure–volume curves in acute respiratory failure. Automated low flow inflation versus occlusion. Am J Respir Crit Care Med 155:1629–1636

    CAS  Google Scholar 

  20. Lu Q, Vieira S, Richecoeur J, Puybasset L, Kalfon P, Coriat P, Rouby JJ (1999) A simple automated method for measuring pressure volume curve during mechanical ventilation. Am J Respir Crit Care Med 159:275–282

    PubMed  CAS  Google Scholar 

  21. Ranieri VM, Giuliani R, Flore T, Dambrosio M, Milic-Emili J (1994) Volume–pressure curve of the respiratory system predicts effects of PEEP in ARDS: ‘occlusion’ versus ‘constant flow’ technique. Am J Respir Crit Care Med 149:19–27

    PubMed  CAS  Google Scholar 

  22. Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure–volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178

    PubMed  CAS  Google Scholar 

  23. Blanch L, Lopez-Aguilar J, Villagra A (2007) Bedside evaluation of pressure–volume curves in patients with acute respiratory distress syndrome. Curr Opin Crit Care 13:332–337

    Article  PubMed  Google Scholar 

  24. Markhorst DG, Van Gestel JP, Van Genderingen HR, Haitsma JJ, Lachmann B, Van Vught AJ (2006) Respiratory inductive plethysmography accuracy at varying PEEP levels and degrees of acute lung injury. J Med Eng Technol 30:166–175

    Article  PubMed  CAS  Google Scholar 

  25. Dall’ava-Santucci J, Armaganidis A, Brunet F, Dhainaut JF, Chelucci G, Monsallier J, Lockhart A (1988) Causes of error of respiratory pressure–volume curves in paralyzed subjects. J Appl Physiol 64:42–49

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piacentini, E., Wysocki, M., Blanch, L. (2012). A new automated method versus continuous positive airway pressure method for measuring pressure–volume curves in patients with acute lung injury. In: Pinsky, M., Brochard, L., Hedenstierna, G., Antonelli, M. (eds) Applied Physiology in Intensive Care Medicine 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28270-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28270-6_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28269-0

  • Online ISBN: 978-3-642-28270-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics