Skip to main content

Abstract

In this Chapter, recent results about studies of interactions between piezoelectric nanoparticles and living systems will be discussed. As extremely innovative materials, great importance is devoted to the investigations of their stabilisation in physiological environments and to their biocompatibility. Applications as drug carriers and nanovectors will be thereafter described, and special attention will be dedicated to tissue engineering applications. Finally, preliminary results achieved by our group on “wireless” cell stimulation will be approached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gao, J., Xu, B.: Applications of nanomaterials inside cells. Nano Today 4, 37–51 (2009)

    Article  MathSciNet  Google Scholar 

  2. Whitesides, G.M.: The “right” size in nanobiotechnology. Nat. Biotechnol. 21, 1161–1165 (2003)

    Article  Google Scholar 

  3. Mann, S.: Life as a nanoscale phenomenon. Angew Chem. Int. Edit. 47, 5306–5320 (2008)

    Article  Google Scholar 

  4. Zaveri, T.D., Dolgova, N.V., Chu, B.H., et al.: Contributions of sur-face topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials 31, 2999–3007 (2010)

    Article  Google Scholar 

  5. Ciofani, G., Ricotti, L., Danti, S., et al.: Investigation of interac-tions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility and differentiation. Int. J. Nanomed. 5, 285–298 (2010)

    Article  Google Scholar 

  6. Ciofani, G., Danti, S., D’Alessandro, D., et al.: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4, 6267–6277 (2010)

    Article  Google Scholar 

  7. Chen, X., Wu, P., Rousseas, M., Okawa, D., et al.: Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890–891 (2009)

    Article  Google Scholar 

  8. Horváth, L., Magrez, A., Golberg, D., et al.: In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 5, 3800–3810 (2011)

    Article  Google Scholar 

  9. Zhi, C., Bando, Y., Tang, C., et al.: Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc. 127, 15996–15997 (2005)

    Article  Google Scholar 

  10. Ciofani, G., Danti, S., D’Alessandro, D., et al.: Barium titanate nanoparticles: highly cytocompatible dispersions in glycol-chitosan and doxorubicin complexes for cancer therapy. Nanoscale Res. Lett. 5, 1093–1101 (2010)

    Article  Google Scholar 

  11. Deng, X., Luan, Q., Chen, W., et al.: Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20, 115101 (2009)

    Article  Google Scholar 

  12. Ostrovsky, S., Kazimirsky, G., Gedanken, A., et al.: Selective cy-totoxic effect of ZnO nanoparticles on glioma cells. Nano. Res. 2, 882–890 (2009)

    Article  Google Scholar 

  13. Taccola, L., Raffa, V., Riggio, C., et al.: Zinc oxide nanoparticles as selective killers of proliferating cells. Int. J. Nanomed. 6, 1129–1140 (2011)

    Google Scholar 

  14. Kim, J.S., Park, W.I., Lee, C.H., et al.: ZnO nanorod biosensor for highly sensitive detection of specific protein binding. J. Korean Phys. Soc. 4, 1635–1639 (2006)

    Google Scholar 

  15. Adams, L.K., Lyon, D.Y., Alvarez, P.J.: Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40, 3527–3532 (2006)

    Article  Google Scholar 

  16. Brayner, R., Ferrari-Iliou, R., Brivois, N., et al.: Toxicological impact studies based on escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)

    Article  Google Scholar 

  17. Zhang, L., Jiang, Y., Ding, Y., et al.: Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart Res. 9, 479–489 (2007)

    Article  Google Scholar 

  18. Gojova, A., Guo, B., Kota, R.S., et al.: Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ. Health Perspect 115, 403–409 (2007)

    Article  Google Scholar 

  19. Jeng, H.A., Swanson, J.: Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health A 41, 2699–2711 (2006)

    Google Scholar 

  20. Brunner, T.J., Wick, P., Manser, P., et al.: In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40, 4374–4381 (2006)

    Article  Google Scholar 

  21. Dechsakulthorn, F., Hayes, A., Bakand, S., et al.: In vitro cytotoxicity assessment of selected nanoparticles using human skin fibro-blasts. AATEX 14, 397–400 (2007)

    Google Scholar 

  22. Lin, W.S., Xu, Y., Huang, C.C., et al.: Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J. Nanopart Res. 11, 25–39 (2008)

    Article  Google Scholar 

  23. Zheng, Y., Li, R., Wang, Y.: In vitro and in vivo biocompatibility studies of ZnO nanoparticles. Int. J. Mod. Phys. B 23, 1566–1571 (2009)

    Article  Google Scholar 

  24. Reddy, K.M., Feris, K., Bell, J., et al.: Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90, 213902 (2007)

    Article  Google Scholar 

  25. Hanley, C., Layne, J., Punnoose, A., et al.: Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19, 295103 (2008)

    Article  Google Scholar 

  26. Block, M.L., Wu, X., Pei, Z., et al.: Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J. 18, 1618–1620 (2004)

    Google Scholar 

  27. Peters, A., Veronesi, B., Calderon-Garciduenas, L., et al.: Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol. 3, 1–13 (2006)

    Article  Google Scholar 

  28. Persson, E., Henriksson, J., Tallkvist, J., et al.: Transport and subcellular distribution of intranasally administered zinc in the olfactory system of rats and pikes. Toxicology 191, 97–108 (2003)

    Article  Google Scholar 

  29. Takeda, A., Ohnuma, M., Sawashita, J., et al.: Zinc transport in the rat olfactory system. Neurosci. Lett. 225, 69–71 (1997)

    Article  Google Scholar 

  30. Daniels, W.M.U., Hendricks, J., Salie, R., et al.: A mechanism for zinc toxicity in neuroblastoma cells. Metab. Brain Dis. 19, 79–88 (2004)

    Article  Google Scholar 

  31. Xia, T., Kovochich, M., Liong, M., et al.: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008)

    Article  Google Scholar 

  32. Li, Z., Yang, R., Yu, M., et al.: Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112, 20114–20117 (2008)

    Article  Google Scholar 

  33. Ciofani, G., Danti, S., Moscato, S., et al.: Preparation of stable dispersion of barium titanate nanoparticles: potential applications in biomedicine. Colloid. Surface B 76, 535–543 (2010)

    Article  Google Scholar 

  34. Hsieh, C.L., Grange, R., Pua, Y., et al.: Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes. Biomaterials 31, 2272–2277 (2010)

    Article  Google Scholar 

  35. Liao, L.B., Zhou, H.Y., Xiao, X.M.: Spectroscopic and viscosity study of doxorubicin interaction with DNA. Mol. Struct. 749, 108–113 (2005)

    Article  Google Scholar 

  36. Kremer, L.C., van Dalen, E.C., Offringa, M., et al.: Frequency and risk factors of anthracycline-induced clinical heart failure in chil-dren: a systematic review. Ann. Oncol. 13, 503–512 (2002)

    Article  Google Scholar 

  37. Longhi, A., Ferrari, S., Bacci, G., et al.: Long-term follow-up of patients with doxorubicin-induced cardiac toxicity after chemother-apy for osteosarcoma. Anti-Cancer Drug 18, 737–744 (2007)

    Article  Google Scholar 

  38. Elliott, P.: Pathogenesis of cardiotoxicity induced by anthraciclines. Semin. Oncol. 33, 2–7 (2006)

    Article  Google Scholar 

  39. Anderson, A.B., Gergen, J., Arriaga, E.A.: Detection of doxorubicin and metabolites in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B 769, 97–106 (2002)

    Article  Google Scholar 

  40. Lorusso, D., Di Stefano, A., Carone, V., et al.: Pegylated lipo-somal doxorubicin-related palmar-plantar erythrodysesthesia (“hand-foot” syndrome). Ann. Onc. 18, 1159–1164 (2007)

    Article  Google Scholar 

  41. Dorfman, H.D., Czerniak, B.: Bone cancers. Cancer 75, 203–210 (1995)

    Article  Google Scholar 

  42. Kostarelos, K.: The long and short of carbon nanotube toxicity. Nature Biotechnol. 26, 774–776 (2008)

    Article  Google Scholar 

  43. Ciofani, G., Raffa, V., Menciassi, A., et al.: Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 4, 8–10 (2009)

    Article  Google Scholar 

  44. Noda, T., Fujino, T., Mie, M., et al.: Transduction of MyoD protein into myoblasts induces myogenic differentiation without addition of protein transduction domain. Biochem. Bioph. Res. Commun. 382, 473–477 (2009)

    Article  Google Scholar 

  45. Kanisicak, O., Mendez, J.J., Yamamoto, S., et al.: Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev. Biol. 332, 131–141 (2009)

    Article  Google Scholar 

  46. Suzuki, K., Brand, N.J., Allen, S., et al.: Overexpression of con-nexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J. Thorac. Cardiovasc. Surg. 122, 759–766 (2001)

    Article  Google Scholar 

  47. Ciofani, G., Danti, S., D’Alessandro, D., et al.: Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochem. Bioph. Res. Commun. 394, 405–411 (2010)

    Article  Google Scholar 

  48. Belyanskaya, L., Manser, P., Spohn, P., et al.: The reliability and limits of the MTT reduction assay for carbon nanotubes–cell interaction. Carbon 45, 2643–2648 (2007)

    Article  Google Scholar 

  49. Woerle-Knirsch, J.M., Pulskamp, K., Krug, H.F.: Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Letters 6, 1261–1268 (2006)

    Article  Google Scholar 

  50. Lanza, R.P., Langer, R.S., Vacanti, J.: Principles of tissue engineering. Elsevier Academic Press, London (2007)

    Google Scholar 

  51. Titushkin, I., Sun, S., Shin, J., et al.: Physicochemical control of adult stem cell differentiation: shedding light on potential molecular mechanism. J. Biomed. Biotech. 743476 (2010)

    Google Scholar 

  52. Ebersole, R.C., Foss, R.P., Ward, M.D.: Piezoelectric cell growth sensor. Nat. Biotech. 9, 450–454 (1991)

    Article  Google Scholar 

  53. Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23, 399–407 (1998)

    Article  Google Scholar 

  54. Cowin, S., Weinbaum, S., Zeng, Y.: A case for bone canaliculi as the anatomical site of strain generated potentials. J. Biomech. 28, 1281–1297 (1995)

    Article  Google Scholar 

  55. Baxter, F.R., Bowen, C.R., Turner, I.G., et al.: Electrically active bioceramics: a review of interfacial responses. Ann. Biomed. Eng. 38, 2079–2092 (2010)

    Article  Google Scholar 

  56. Beloti, M.M., de Oliveira, P.T., Gimenes, R., et al.: In vitro bio-compatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate. J. Biomed. Mat. Res. A 79, 282–288 (2006)

    Article  Google Scholar 

  57. Baxter, F.R., Turner, I.G., Bowen, C.R., et al.: An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. J. Mater. Sci. Mater. Med. 20, 1697–1708 (2009)

    Article  Google Scholar 

  58. Li, J., Qu, Y., Zhang, X., et al.: Bioactive nano-titania ceramics with biomechanical compatibility prepared by doping with piezoelectric BaTiO3. Acta. Biomater. 5, 2189–2195 (2009)

    Article  Google Scholar 

  59. Park, J.B., von Recum, A.F., Kenner, G.H., et al.: Piezoelectric ceramic implants: a feasibility study. J. Biomed. Mater Res. 14, 269–277 (1980)

    Article  Google Scholar 

  60. Marino, A., Rosson, J., Gonzalez, E., et al.: Quasi-static charge interactions in bone. J. Electrostatics 21, 347–360

    Google Scholar 

  61. Feng, J., Yuan, H.P., Zhang, X.D.: Promotion of osteogenesis by a piezoelectric biological ceramic. Biomaterials 18, 1531–1534 (1997)

    Article  Google Scholar 

  62. Gimenes, R., Zaghete, M.A.: Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration. In: Proceedings of the SPIE 5385, pp. 539–547 (2004)

    Google Scholar 

  63. Mendenhall, J., Li, D., Frey, M., et al.: Piezoelectric poly(3-hydroxybutyrate)-poly(lactic acid) three dimensional scaffolds for bone tissue engineering. In: Proceedings of the Materials Research Society Symposium, vol. 1025, pp. 8–13 (2008)

    Google Scholar 

  64. Lahiri, D., Rouzaud, F., Richard, T., et al.: Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 6, 3524–3533 (2010)

    Article  Google Scholar 

  65. Darling, E.M., Athanasiou, K.A.: Biomechanical strategies for articular cartilage regeneration. Ann. Biomed. Eng. 31, 1114–1124 (2003)

    Article  Google Scholar 

  66. Schulz, R.M., Bader, A.: Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 36, 539–568 (2007)

    Article  Google Scholar 

  67. Fini, M., Giavaresi, G., Carpi, A., et al.: Effects of pulsed electromagnetic fields on articular hyaline cartilage: Review of experimental and clinical studies. Biomed. Pharmacother. 59, 388–394 (2005)

    Article  Google Scholar 

  68. Mitani, G., Sato, M., Lee, J.I.K., et al.: The properties of bioengineered chondrocyte sheets for cartilage regeneration. BCM Biotech. 9, 17–28 (2009)

    Google Scholar 

  69. Lan, M.A., Gersbach, C.A., Michael, K.E., et al.: Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials 26, 4523–4531 (2005)

    Article  Google Scholar 

  70. Engler, A.J., Griffin, M.A., Sen, S., et al.: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004)

    Article  Google Scholar 

  71. Huang, N.F., Patel, S., Thakar, R.G., et al.: Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett. 6, 537–542 (2006)

    Article  Google Scholar 

  72. Marloes, L.P., Langelaan, K.J.M., Boonen, R.B.P., et al.: Meet the new meat: tissue engineered skeletal muscle. Trends Food Sci. Tech. 21, 59–66 (2010)

    Article  Google Scholar 

  73. Vandenburgh, H.H., Karlisch, P.: Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev. Biol. 25, 607–616 (1989)

    Article  Google Scholar 

  74. Tatsumi, R., Sheehan, S.M., Iwasaki, H., et al.: Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp. Cell Res. 267, 107–114 (2001)

    Article  Google Scholar 

  75. Kook, S.H., Lee, H.J., Chung, W.T., et al.: Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol. Cell 25, 479–486 (2008)

    Google Scholar 

  76. Bach, A.D., Beier, J.P., Stern-Stater, J., et al.: Skeletal muscle tissue engineering. J. Cell Mol. Med. 8, 413–422 (2004)

    Article  Google Scholar 

  77. Ciofani, G., Ricotti, L., Menciassi, A., et al.: Preparation, characterization and in vitro testing of poly(lactic-co-glycolic) acid / barium titanate nanoparticle composites for enhanced cellular proliferation. Biomed. Microdevices 13, 255–266 (2011)

    Article  Google Scholar 

  78. Weber, N., Lee, Y.S., Shanmugasundaram, S., et al.: Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomat. 6, 3550–3556 (2010)

    Article  Google Scholar 

  79. Mackinnon, S.E., Dellon, A.L.: Surgery of the peripheral nerve. Thieme Medical Publishers, New York (1988)

    Google Scholar 

  80. Schmidt, C.E., Leach, J.B.: Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5, 293–347 (2003)

    Article  Google Scholar 

  81. Valentini, R.F., Vargo, T.G., Gardella Jr., J.A., et al.: Patterned neuronal attachment and outgrowth on surface modified, electrically charged fluoropolymer substrates. J. Biomater. Sci. Polym. Ed. 5, 13–36 (1993)

    Article  Google Scholar 

  82. Seil, J.T., Webster, T.J.: Electrically active nanaomaterials as improved neural tissue regeneration scaffolds. WIREs Nanomed. Nanobiotech. 2, 635–647 (2010)

    Article  Google Scholar 

  83. Aebischer, P., Valentini, R.F., Dario, P., et al.: Piezoelectric guidance channels enhance regeneration in the mouse sciatic nerve after axotomy. Brain Res. 436, 165–168 (1987)

    Article  Google Scholar 

  84. Seil, J.T., Webster, T.J.: Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites. Int. J. Nanomed. 3, 523–531 (2008)

    Google Scholar 

  85. Lee, Y.S., Arinzeh, T.L.: Electrospun nanofibrous materials for neural tissue engineering. Polymers 3, 413–426 (2011)

    Article  Google Scholar 

  86. Cellot, G., Cilia, E., Cipollone, S., et al.: Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 4, 126–133 (2009)

    Article  Google Scholar 

  87. Gimsa, J., Habel, B., Schreiber, U., et al.: Choosing electrodes for deep brain stimulation experiments-electrochemical considerations. J. Neurosci. Meth. 142, 251–265 (2005)

    Article  Google Scholar 

  88. Adams, C., Mathieson, K., Gunning, D., et al.: Development of flexible arrays for in vivo neuronal recording and stimulation. Nucl. Instrum. Meth. A 546, 154–159 (2005)

    Article  Google Scholar 

  89. Valls-Solé, J., Compta, Y., Costa, J., et al.: Human central nervous system circuits examined through the electrodes implanted for deep brain stimulation. Clin. Neurophysiol. 119, 1219–1231 (2008)

    Article  Google Scholar 

  90. Albert, G.C., Cook, C.M., Prato, F.S., et al.: Deep brain stimulation, vagal nerve stimulation and transcranial stimulation: an overview of stimulation parameters and neurotransmitter release. Neurosci. Biobehav. R 33, 1042–1060 (2009)

    Article  Google Scholar 

  91. Dai, Y., Guo, E., Zhang, Z., et al.: Electric-field-induced deformation in boron nitride nanotubes. J. Phys. D Appl. Phys. 42, 85403 (2009)

    Article  Google Scholar 

  92. Bai, X., Golberg, D., Bando, Y., et al.: Deformation-driven electrical transport of individual boron nitride nanotubes. Nano Letters 7, 632–637 (2007)

    Article  Google Scholar 

  93. Kimura, K., Yanagida, Y., Haruyama, T., et al.: Electrically in-duced neurite outgrowth of PC12 cells on the electrode surface. Med. Biol. Eng. Comput. 36, 493–498 (1998)

    Article  Google Scholar 

  94. Manivannan, S., Terakawa, S.: Rapid filopodial sprouting induced by electrical stimulation in nerve terminals. Jpn. J. Physiol. 43, 217–220 (1993)

    Google Scholar 

  95. McClellan, A.D., Kovalenko, M.O., Benes, J.A., et al.: Spinal cord injury induces changes in electrophysiological properties and ion channel expression of reticulospinal neurons in larval lamprey. J. Neurosci. 28, 650–659 (2008)

    Article  Google Scholar 

  96. Udina, E., Furey, M., Busch, S., et al.: Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Exp. Neurol. 210, 238–247 (2008)

    Article  Google Scholar 

  97. Wood, M., Willits, R.K.: Short-duration, DC electrical stimulation increases chick embryo DRG neurite outgrowth. Bioelectromagnetics 27, 328–331

    Google Scholar 

  98. Danti, S., Ciofani, G., Moscato, S., et al.: Intracellular nanotransducers for regenerative medicine: in vitro bone formation induced by Boron Nitride Nanotubes (2012) (submitted)

    Google Scholar 

  99. Lyons, K.E., Pahwa, R.: Deep brain stimulation in Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 4, 290–295 (2004)

    Article  Google Scholar 

  100. Xu, J., Chen, J.D.Z.: Intestinal electrical stimulation improves delayed gastric emptying and vomiting induced by duodenal distension in dogs. Neurogastroent Motil. 20, 236–242 (2008)

    Article  Google Scholar 

  101. Ross, K.B., Dubin, S., Nigroni, P., et al.: Programmed stimulation for simulation of atrial tachyarrythmias. Biomedical Sciences Instrumentation 33, 25–29 (1997)

    Google Scholar 

  102. Gordon, T., Brushart, T.M., Amirjani, N., et al.: The potential of electrical stimulation to promote functional recovery after peripheral nerve injury - Comparisons between rats and humans. Acta Neurochir. 100, 3–11 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Ciofani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Ciofani, G., Danti, S., Ricotti, L., D’Alessandro, D., Moscato, S., Mattoli, V. (2012). Applications of Piezoelectricity in Nanomedicine. In: Ciofani, G., Menciassi, A. (eds) Piezoelectric Nanomaterials for Biomedical Applications. Nanomedicine and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28044-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28044-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28043-6

  • Online ISBN: 978-3-642-28044-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics