Skip to main content

Evaluation and Management of Acute Kidney Injury in Neonates

  • Living reference work entry
  • First Online:
Book cover Pediatric Nephrology

Abstract

Critically ill neonates are at risk for acute kidney injury (AKI) and associated complications including fluid overload, longer mechanical ventilation time, increased hospital length of stay, and death. While the general approach to the evaluation and management of AKI in babies is similar to that in older children and adults, optimal care of these fragile patients requires an understanding of the aspects of neonatal physiology and disease unique to this patient group. Neonatal-specific high risk-conditions include extreme prematurity, perinatal asphyxia, necrotizing enterocolitis, and hemodynamically significant patent ductus arteriosus. In addition, neonates exhibit a renal physiology that changes as they transition from intra- to extra-uterine life, one that varies also between term and preterm infants, and creates challenges for interpretation of kidney function biomarkers such as serum creatinine and urine output. Patient heterogeneity in terms of gestational age and size poses additional challenges for the standardization of AKI definitions and monitoring as well as for provision of kidney support therapy when needed. Medical management has historically been the cornerstone of therapy due to technical barriers associated with providing kidney support therapy to these small patients, but advances in technology are reshaping the indications, timing, and risks and benefits of dialysis provision in this setting. New research is highlighting the interplay between AKI and other organs, especially the lungs and brain. The risk for chronic kidney disease, especially in extremely premature infants with and without a history of AKI, is becoming increasingly clear and highlights the need for long-term follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health. 2017;1(3):184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Askenazi DJ, Heagerty PJ, Schmicker RH, Griffin R, Brophy P, Juul SE, et al. Prevalence of acute kidney injury (AKI) in extremely low gestational age neonates (ELGAN). Pediatr Nephrol. 2020;35(9):1737–48.

    Article  PubMed  Google Scholar 

  3. Mwamanenge NA, Assenga E, Furia FF. Acute kidney injury among critically ill neonates in a tertiary hospital in Tanzania; prevalence, risk factors and outcome. PLoS One. 2020;15(2):e0229074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Charlton JR, Boohaker L, Askenazi D, Brophy PD, D'Angio C, Fuloria M, et al. Incidence and risk factors of early onset neonatal AKI. Clin J Am Soc Nephrol. 2019;14(2):184–95.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Charlton JR, Boohaker L, Askenazi D, Brophy PD, Fuloria M, Gien J, et al. Late onset neonatal acute kidney injury: results from the AWAKEN study. Pediatr Res. 2019;85(3):339–48.

    Article  PubMed  Google Scholar 

  6. Zappitelli M, Ambalavanan N, Askenazi DJ, Moxey-Mims MM, Kimmel PL, Star RA, et al. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr Res. 2017;82(4):569–73.

    Article  PubMed  Google Scholar 

  7. Abitbol CL, DeFreitas MJ, Strauss J. Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol. 2016;31(12):2213–22.

    Article  PubMed  Google Scholar 

  8. Guignard JP, Drukker A. Why do newborn infants have a high plasma creatinine? Pediatrics. 1999;103(4):e49.

    Article  CAS  PubMed  Google Scholar 

  9. Askenazi D, Abitbol C, Boohaker L, Griffin R, Raina R, Dower J, et al. Optimizing the AKI definition during first postnatal week using Assessment of Worldwide Acute Kidney Injury Epidemiology in Neonates (AWAKEN) cohort. Pediatr Res. 2019;85(3):329–38.

    Article  PubMed  Google Scholar 

  10. Gupta C, Massaro AN, Ray PE. A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy. Pediatr Nephrol. 2016;31(7):1167–78.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goldstein SL. Urine output assessment in acute kidney injury: the cheapest and most impactful biomarker. Front Pediatr. 2019;7:565.

    Article  PubMed  Google Scholar 

  12. Bezerra CT, Vaz Cunha LC, Liborio AB. Defining reduced urine output in neonatal ICU: importance for mortality and acute kidney injury classification. Nephrol Dial Transplant. 2013;28(4):901–9.

    Article  PubMed  CAS  Google Scholar 

  13. Askenazi DJ, Koralkar R, Levitan EB, Goldstein SL, Devarajan P, Khandrika S, et al. Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatr Res. 2011;70(3):302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pasala S, Carmody JB. How to use... serum creatinine, cystatin C and GFR. Arch Dis Child Educ Pract Ed. 2017;102(1):37–43.

    Article  PubMed  Google Scholar 

  15. Renganathan A, Warner BB, Tarr PI, Dharnidharka VR. The progression of serum cystatin C concentrations within the first month of life after preterm birth-a worldwide systematic review. Pediatr Nephrol. 2020 Aug 5. Online ahead of print.

    Google Scholar 

  16. El-Gammacy TM, Shinkar DM, Mohamed NR, Al-Halag AR. Serum cystatin C as an early predictor of acute kidney injury in preterm neonates with respiratory distress syndrome. Scand J Clin Lab Invest. 2018;78(5):352–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hidayati EL, Utami MD, Rohsiswatmo R, Tridjaja B. Cystatin C compared to serum creatinine as a marker of acute kidney injury in critically ill neonates. Pediatr Nephrol. 2021;36(1):181–6.

    Article  PubMed  Google Scholar 

  18. DeFreitas MJ, Seeherunvong W, Katsoufis CP, RamachandraRao S, Duara S, Yasin S, et al. Longitudinal patterns of urine biomarkers in infants across gestational ages. Pediatr Nephrol. 2016;31(7):1179–88.

    Article  PubMed  Google Scholar 

  19. Askenazi DJ, Koralkar R, Patil N, Halloran B, Ambalavanan N, Griffin R. Acute kidney injury urine biomarkers in very low-birth-weight infants. Clin J Am Soc Nephrol. 2016;11(9):1527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koyner JL, Davison DL, Brasha-Mitchell E, Chalikonda DM, Arthur JM, Shaw AD, et al. Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol. 2015;26(8):2023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kakajiwala A, Kim JY, Hughes JZ, Costarino A, Ferguson J, Gaynor JW, et al. Lack of furosemide responsiveness predicts acute kidney injury in infants after cardiac surgery. Ann Thorac Surg. 2017;104(4):1388–94.

    Article  PubMed  Google Scholar 

  22. Borasino S, Wall KM, Crawford JH, Hock KM, Cleveland DC, Rahman F, et al. Furosemide response predicts acute kidney injury after cardiac surgery in infants and neonates. Pediatr Crit Care Med. 2018;19(4):310–7.

    Article  PubMed  Google Scholar 

  23. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE. Human nephron number: implications for health and disease. Pediatr Nephrol. 2011;26(9):1529–33.

    Article  PubMed  Google Scholar 

  24. Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004;7(1):17–25.

    Article  PubMed  Google Scholar 

  25. Faa G, Gerosa C, Fanni D, Nemolato S, Locci A, Cabras T, et al. Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J Matern Fetal Neonatal Med. 2010;23(sup3):129–33.

    Article  PubMed  Google Scholar 

  26. Askenazi DJ, Griffin R, McGwin G, Carlo W, Ambalavanan N. Acute kidney injury is independently associated with mortality in very low birthweight infants: a matched case-control analysis. Pediatr Nephrol. 2009;24(5):991–7.

    Article  PubMed  Google Scholar 

  27. Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res. 2011;69(4):354–8.

    Article  PubMed  Google Scholar 

  28. Weintraub AS, Connors J, Carey A, Blanco V, Green RS. The spectrum of onset of acute kidney injury in premature infants less than 30 weeks gestation. J Perinatol. 2016;36(6):474–80.

    Article  CAS  PubMed  Google Scholar 

  29. Madsen NL, Goldstein SL, Froslev T, Christiansen CF, Olsen M. Cardiac surgery in patients with congenital heart disease is associated with acute kidney injury and the risk of chronic kidney disease. Kidney Int. 2017;92(3):751–6.

    Article  PubMed  Google Scholar 

  30. Wong JH, Selewski DT, Yu S, Leopold KE, Roberts KH, Donohue JE, et al. Severe acute kidney injury following stage 1 norwood palliation: effect on outcomes and risk of severe acute kidney injury at subsequent surgical stages. Pediatr Crit Care Med. 2016;17(7):615–23.

    Article  PubMed  Google Scholar 

  31. Kriplani DS, Sethna CB, Leisman DE, Schneider JB. Acute kidney injury in neonates in the PICU. Pediatr Crit Care Med. 2016;17(4):e159–64.

    Article  PubMed  Google Scholar 

  32. Rainaldi MA, Perlman JM. Pathophysiology of birth asphyxia. Clin Perinatol. 2016;43(3):409–22.

    Article  PubMed  Google Scholar 

  33. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353(15):1574–84.

    Article  CAS  PubMed  Google Scholar 

  34. Kirkley MJ, Boohaker L, Griffin R, Soranno DE, Gien J, Askenazi D, et al. Acute kidney injury in neonatal encephalopathy: an evaluation of the AWAKEN database. Pediatr Nephrol. 2019;34(1):169–76.

    Article  PubMed  Google Scholar 

  35. Sarkar S, Askenazi DJ, Jordan BK, Bhagat I, Bapuraj JR, Dechert RE, et al. Relationship between acute kidney injury and brain MRI findings in asphyxiated newborns after therapeutic hypothermia. Pediatr Res. 2014;75(3):431–5.

    Article  PubMed  Google Scholar 

  36. Cavallin F, Rubin G, Vidal E, Cainelli E, Bonadies L, Suppiej A, et al. Prognostic role of acute kidney injury on long-term outcome in infants with hypoxic-ischemic encephalopathy. Pediatr Nephrol. 2020;35(3):477–83.

    Article  PubMed  Google Scholar 

  37. Selewski DT, Jordan BK, Askenazi DJ, Dechert RE, Sarkar S. Acute kidney injury in asphyxiated newborns treated with therapeutic hypothermia. J Pediatr. 2013;162(4):725–9. e1

    Article  PubMed  Google Scholar 

  38. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364(3):255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heida FH, Hulscher JB, Schurink M, van Vliet MJ, Kooi EM, Kasper DC, et al. Bloodstream infections during the onset of necrotizing enterocolitis and their relation with the pro-inflammatory response, gut wall integrity and severity of disease in NEC. J Pediatr Surg. 2015;50(11):1837–41.

    Article  CAS  PubMed  Google Scholar 

  40. Criss CN, Selewski DT, Sunkara B, Gish JS, Hsieh L, McLeod JS, et al. Acute kidney injury in necrotizing enterocolitis predicts mortality. Pediatr Nephrol. 2018;33(3):503–10.

    Article  PubMed  Google Scholar 

  41. Garg PM, Tatum R, Ravisankar S, Shekhawat PS, Chen YH. Necrotizing enterocolitis in a mouse model leads to widespread renal inflammation, acute kidney injury, and disruption of renal tight junction proteins. Pediatr Res. 2015;78(5):527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benitz WE, Committee on Fetus and Newborn. Patent ductus arteriosus in preterm infants. Pediatrics. 2016;137(1):e20153730.

    Article  Google Scholar 

  43. Giesinger RE, McNamara PJ. Hemodynamic instability in the critically ill neonate: an approach to cardiovascular support based on disease pathophysiology. Semin Perinatol. 2016;40(3):174–88.

    Article  PubMed  Google Scholar 

  44. Meena V, Meena DS, Rathore PS, Chaudhary S, Soni JP. Comparison of the efficacy and safety of indomethacin, ibuprofen, and paracetamol in the closure of patent ductus arteriosus in preterm neonates – a randomized controlled trial. Ann Pediatr Cardiol. 2020;13(2):130–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Murphy HJ, Thomas B, Van Wyk B, Tierney SB, Selewski DT, Jetton JG. Nephrotoxic medications and acute kidney injury risk factors in the neonatal intensive care unit: clinical challenges for neonatologists and nephrologists. Pediatr Nephrol. 2020;35(11):2077–88.

    Article  PubMed  Google Scholar 

  46. Blinder JJ, Goldstein SL, Lee VV, Baycroft A, Fraser CD, Nelson D, et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368–74.

    Article  PubMed  Google Scholar 

  47. Morgan CJ, Zappitelli M, Robertson CM, Alton GY, Sauve RS, Joffe AR, et al. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr. 2013;162(1):120–7. e1

    Article  PubMed  Google Scholar 

  48. Bellos I, Iliopoulos DC, Perrea DN. Pharmacological interventions for the prevention of acute kidney injury after pediatric cardiac surgery: a network meta-analysis. Clin Exp Nephrol. 2019;23(6):782–91.

    Article  PubMed  Google Scholar 

  49. Gadepalli SK, Selewski DT, Drongowski RA, Mychaliska GB. Acute kidney injury in congenital diaphragmatic hernia requiring extracorporeal life support: an insidious problem. J Pediatr Surg. 2011;46(4):630–5.

    Article  PubMed  Google Scholar 

  50. Zwiers AJ, de Wildt SN, Hop WC, Dorresteijn EM, Gischler SJ, Tibboel D, et al. Acute kidney injury is a frequent complication in critically ill neonates receiving extracorporeal membrane oxygenation: a 14-year cohort study. Crit Care. 2013;17(4):R151.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ryan A, Gilhooley M, Patel N, Reynolds BC. Prevalence of acute kidney injury in neonates with congenital diaphragmatic hernia. Neonatology. 2020;117(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  52. Fleming GM, Sahay R, Zappitelli M, King E, Askenazi DJ, Bridges BC, et al. The incidence of acute kidney injury and its effect on neonatal and pediatric extracorporeal membrane oxygenation outcomes: a multicenter report from the kidney intervention during extracorporeal membrane oxygenation study group. Pediatr Crit Care Med. 2016;17(12):1157–69.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Askenazi DJ, Ambalavanan N, Hamilton K, Cutter G, Laney D, Kaslow R, et al. Acute kidney injury and renal replacement therapy independently predict mortality in neonatal and pediatric noncardiac patients on extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2011;12(1):e1–6.

    Article  PubMed  Google Scholar 

  54. Gorga SM, Sahay RD, Askenazi DJ, Bridges BC, Cooper DS, Paden ML, et al. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy: a multicenter retrospective cohort study. Pediatr Nephrol. 2020;35(5):871–82.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu Y, Hua X, Yang G, Xiang B, Jiang X. Incidence, risk factors, and outcomes of acute kidney injury in neonates after surgical procedures. Pediatr Nephrol. 2020;35(7):1341–6.

    Article  PubMed  Google Scholar 

  56. Rhone ET, Carmody JB, Swanson JR, Charlton JR. Nephrotoxic medication exposure in very low birth weight infants. J Matern Fetal Neonatal Med. 2014;27(14):1485–90.

    Article  CAS  PubMed  Google Scholar 

  57. Barhight M, Altaye M, Gist KM, Isemann B, Goldstein SL, Akinbi H. Nephrotoxic medications and associated acute kidney injury in very low birth weight infants. J Clin Nephrol Res. 2017;4(4):1070.

    PubMed  PubMed Central  Google Scholar 

  58. Resontoc LP, Yap HK. Renal vascular thrombosis in the newborn. Pediatr Nephrol. 2016;31(6):907–15.

    Article  PubMed  Google Scholar 

  59. Lau KK, Stoffman JM, Williams S, McCusker P, Brandao L, Patel S, et al. Neonatal renal vein thrombosis: review of the English-language literature between 1992 and 2006. Pediatrics. 2007;120(5):e1278–84.

    Article  PubMed  Google Scholar 

  60. Cohen RS, Ramachandran P, Kim EH, Glasscock GF. Retrospective analysis of risks associated with an umbilical artery catheter system for continuous monitoring of arterial oxygen tension. J Perinatol. 1995;15(3):195–8.

    CAS  PubMed  Google Scholar 

  61. Habli M, Lim FY, Crombleholme T. Twin-to-twin transfusion syndrome: a comprehensive update. Clin Perinatol. 2009;36(2):391–416. x

    Article  PubMed  Google Scholar 

  62. Melhem NZ, Ledermann S, Rees L. Chronic kidney disease following twin-to-twin transfusion syndrome-long-term outcomes. Pediatr Nephrol. 2019;34(5):883–8.

    Article  PubMed  Google Scholar 

  63. Sahay M, Swarnalata, Swain M, Padua M. Renal cortical necrosis in tropics. Saudi J Kidney Dis Transpl. 2013;24(4):725–30.

    Article  PubMed  Google Scholar 

  64. Lerner GR, Kurnetz R, Bernstein J, Chang CH, Fleischmann LE, Gruskin AB. Renal cortical and renal medullary necrosis in the first 3 months of life. Pediatr Nephrol. 1992;6(6):516–8.

    Article  CAS  PubMed  Google Scholar 

  65. Fakhouri F, Vercel C, Fremeaux-Bacchi V. Obstetric nephrology: AKI and thrombotic microangiopathies in pregnancy. Clin J Am Soc Nephrol. 2012;7(12):2100–6.

    Article  PubMed  Google Scholar 

  66. Bell EF, Warburton D, Stonestreet BS, Oh W. Effect of fluid administration on the development of symptomatic patent ductus arteriosus and congestive heart failure in premature infants. N Engl J Med. 1980;302(11):598–604.

    Article  CAS  PubMed  Google Scholar 

  67. Bell EF, Warburton D, Stonestreet BS, Oh W. High-volume fluid intake predisposes premature infants to necrotising enterocolitis. Lancet. 1979;2(8133):90.

    Article  CAS  PubMed  Google Scholar 

  68. Oh W, Poindexter BB, Perritt R, Lemons JA, Bauer CR, Ehrenkranz RA, et al. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr. 2005;147(6):786–90.

    Article  PubMed  Google Scholar 

  69. Selewski DT, Akcan-Arikan A, Bonachea EM, Gist KM, Goldstein SL, Hanna M, et al. The impact of fluid balance on outcomes in critically ill near-term/term neonates: a report from the AWAKEN study group. Pediatr Res. 2019;85(1):79–85.

    Article  PubMed  Google Scholar 

  70. Selewski DT, Gist KM, Nathan AT, Goldstein SL, Boohaker LJ, Akcan-Arikan A, et al. The impact of fluid balance on outcomes in premature neonates: a report from the AWAKEN study group. Pediatr Res. 2020;87(3):550–7.

    Article  CAS  PubMed  Google Scholar 

  71. Mah KE, Hao S, Sutherland SM, Kwiatkowski DM, Axelrod DM, Almond CS, et al. Fluid overload independent of acute kidney injury predicts poor outcomes in neonates following congenital heart surgery. Pediatr Nephrol. 2018;33(3):511–20.

    Article  PubMed  Google Scholar 

  72. Selewski DT, Goldstein SL. The role of fluid overload in the prediction of outcome in acute kidney injury. Pediatr Nephrol. 2018;33(1):13–24.

    Article  PubMed  Google Scholar 

  73. Mintzer JP, Moore JE. Regional tissue oxygenation monitoring in the neonatal intensive care unit: evidence for clinical strategies and future directions. Pediatr Res. 2019;86(3):296–304.

    Article  PubMed  Google Scholar 

  74. Harer MW, Chock VY. Renal tissue oxygenation monitoring-an opportunity to improve kidney outcomes in the vulnerable neonatal population. Front Pediatr. 2020;8:241.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Selby NM, Casula A, Lamming L, Stoves J, Samarasinghe Y, Lewington AJ, et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol. 2019;30(3):505–15.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Goldstein SL, Dahale D, Kirkendall ES, Mottes T, Kaplan H, Muething S, et al. A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int. 2020;97(3):580–8.

    Article  CAS  PubMed  Google Scholar 

  77. Stoops C, Stone S, Evans E, Dill L, Henderson T, Griffin R, et al. Baby NINJA (nephrotoxic injury negated by just-in-time action): reduction of nephrotoxic medication-associated acute kidney injury in the neonatal intensive care unit. J Pediatr. 2019;215:223–8. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harer MW, Selewski DT, Kashani K, Basu RK, Gist KM, Jetton JG, et al. Improving the quality of neonatal acute kidney injury care: neonatal-specific response to the 22nd Acute Disease Quality Initiative (ADQI) conference. J Perinatol. 2021;41(2):185–195.

    Google Scholar 

  79. Starr MC, Kula A, Lieberman J, Menon S, Perkins AJ, Lam T, et al. The impact of increased awareness of acute kidney injury in the Neonatal Intensive Care Unit on acute kidney injury incidence and reporting: results of a retrospective cohort study. J Perinatol. 2020;40(9):1301–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Roy JP, Goldstein SL, Schuh MP. Under-recognition of neonatal acute kidney injury and lack of follow-up. Am J Perinatol 2020 Sept 24. Online ahead of print.

    Google Scholar 

  81. Harel Z, Harel S, Shah PS, Wald R, Perl J, Bell CM. Gastrointestinal adverse events with sodium polystyrene sulfonate (Kayexalate) use: a systematic review. Am J Med. 2013;126(3):264 e9–24.

    Article  CAS  Google Scholar 

  82. Thompson K, Flynn J, Okamura D, Zhou L. Pretreatment of formula or expressed breast milk with sodium polystyrene sulfonate (Kayexalate((R))) as a treatment for hyperkalemia in infants with acute or chronic renal insufficiency. J Ren Nutr. 2013;23(5):333–9.

    Article  CAS  PubMed  Google Scholar 

  83. Taylor JM, Oladitan L, Carlson S, Hamilton-Reeves JM. Renal formulas pretreated with medications alters the nutrient profile. Pediatr Nephrol. 2015;30(10):1815–23.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Venkataraman PS, Blick KE. Effect of mineral supplementation of human milk on bone mineral content and trace element metabolism. J Pediatr. 1988;113(1 Pt 2):220–4.

    Article  CAS  PubMed  Google Scholar 

  85. Ferrara E, Lemire J, Reznik VM, Grimm PC. Dietary phosphorus reduction by pretreatment of human breast milk with sevelamer. Pediatr Nephrol. 2004;19(7):775–9.

    Article  PubMed  Google Scholar 

  86. Raaijmakers R, Houkes LM, Schroder CH, Willems JL, Monnens LA. Pre-treatment of dairy and breast milk with sevelamer hydrochloride and sevelamer carbonate to reduce phosphate. Perit Dial Int. 2013;33(5):565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gouyon JB, Guignard JP. Renal effects of theophylline and caffeine in newborn rabbits. Pediatr Res. 1987;21(6):615–8.

    Article  CAS  PubMed  Google Scholar 

  88. Gouyon JB, Vallotton M, Guignard JP. The newborn rabbit: a model for studying hypoxemia-induced renal changes. Biol Neonate. 1987;52(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  89. Bellos I, Pandita A, Yachha M. Effectiveness of theophylline administration in neonates with perinatal asphyxia: a meta-analysis. J Matern Fetal Neonatal Med. 2019:1–9.

    Google Scholar 

  90. Chock VY, Cho SH, Frymoyer A. Aminophylline for renal protection in neonatal hypoxic-ischemic encephalopathy in the era of therapeutic hypothermia. Pediatr Res. 2021;89(4):974–980.

    Google Scholar 

  91. Kellum JA, Lameire N, Group KAGW. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care. 2013;17(1):204.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Aviles-Otero N, Kumar R, Khalsa DD, Green G, Carmody JB. Caffeine exposure and acute kidney injury in premature infants with necrotizing enterocolitis and spontaneous intestinal perforation. Pediatr Nephrol. 2019;34(4):729–36.

    Article  PubMed  Google Scholar 

  93. Carmody JB, Harer MW, Denotti AR, Swanson JR, Charlton JR. Caffeine exposure and risk of acute kidney injury in a retrospective cohort of very low birth weight neonates. J Pediatr. 2016;172:63–8. e1

    Article  CAS  PubMed  Google Scholar 

  94. Harer MW, Askenazi DJ, Boohaker LJ, Carmody JB, Griffin RL, Guillet R, et al. Association between early caffeine citrate administration and risk of acute kidney injury in preterm neonates: results from the AWAKEN study. JAMA Pediatr. 2018;172(6):e180322.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bagshaw SM, Bellomo R, Kellum JA. Oliguria, volume overload, and loop diuretics. Crit Care Med. 2008;36(4 Suppl):S172–8.

    Article  PubMed  Google Scholar 

  96. Segar JL. Neonatal diuretic therapy: furosemide, thiazides, and spironolactone. Clin Perinatol. 2012;39(1):209–20.

    Article  PubMed  Google Scholar 

  97. Mirochnick MH, Miceli JJ, Kramer PA, Chapron DJ, Raye JR. Renal response to furosemide in very low birth weight infants during chronic administration. Dev Pharmacol Ther. 1990;15(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  98. Gimpel C, Krause A, Franck P, Krueger M, von Schnakenburg C. Exposure to furosemide as the strongest risk factor for nephrocalcinosis in preterm infants. Pediatr Int. 2010;52(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  99. Robertson CM, Tyebkhan JM, Peliowski A, Etches PC, Cheung PY. Ototoxic drugs and sensorineural hearing loss following severe neonatal respiratory failure. Acta Paediatr. 2006;95(2):214–23.

    Article  PubMed  Google Scholar 

  100. Reilly RF, Huang CL. The mechanism of hypocalciuria with NaCl cotransporter inhibition. Nat Rev Nephrol. 2011;7(11):669–74.

    Article  CAS  PubMed  Google Scholar 

  101. Guzzo I, de Galasso L, Mir S, Bulut IK, Jankauskiene A, Burokiene V, et al. Acute dialysis in children: results of a European survey. J Nephrol. 2019;32(3):445–51.

    Article  PubMed  Google Scholar 

  102. Kwiatkowski DM, Menon S, Krawczeski CD, Goldstein SL, Morales DL, Phillips A, et al. Improved outcomes with peritoneal dialysis catheter placement after cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2015;149(1):230–6.

    Article  PubMed  Google Scholar 

  103. Raaijmakers R, Schroder CH, Gajjar P, Argent A, Nourse P. Continuous flow peritoneal dialysis: first experience in children with acute renal failure. Clin J Am Soc Nephrol. 2011;6(2):311–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Alparslan C, Yavascan O, Bal A, Kanik A, Kose E, Demir BK, et al. The performance of acute peritoneal dialysis treatment in neonatal period. Ren Fail. 2012;34(8):1015–20.

    Article  PubMed  Google Scholar 

  105. Kara A, Gurgoze MK, Aydin M, Taskin E, Bakal U, Orman A. Acute peritoneal dialysis in neonatal intensive care unit: an 8-year experience of a referral hospital. Pediatr Neonatol. 2018;59(4):375–9.

    Article  PubMed  Google Scholar 

  106. Huber R, Fuchshuber A, Huber P. Acute peritoneal dialysis in preterm newborns and small infants: surgical management. J Pediatr Surg. 1994;29(3):400–2.

    Article  CAS  PubMed  Google Scholar 

  107. Harshman LA, Muff-Luett M, Neuberger ML, Dagle JM, Shilyansky J, Nester CM, et al. Peritoneal dialysis in an extremely low-birth-weight infant with acute kidney injury. Clin Kidney J. 2014;7(6):582–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hazle MA, Gajarski RJ, Yu S, Donohue J, Blatt NB. Fluid overload in infants following congenital heart surgery. Pediatr Crit Care Med. 2013;14(1):44–9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lee ST, Cho H. Fluid overload and outcomes in neonates receiving continuous renal replacement therapy. Pediatr Nephrol. 2016;31(11):2145–52.

    Article  PubMed  Google Scholar 

  110. Rajpoot DK, Gargus JJ. Acute hemodialysis for hyperammonemia in small neonates. Pediatr Nephrol. 2004;19(4):390–5.

    Article  PubMed  Google Scholar 

  111. Toda N, Kitamura Y, Okamura T. Neural mechanism of hypertension by nitric oxide synthase inhibitor in dogs. Hypertension. 1993;21(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  112. Ronco C, Brendolan A, Bragantini L, Chiaramonte S, Feriani M, Fabris A, et al. Treatment of acute renal failure in newborns by continuous arterio-venous hemofiltration. Kidney Int. 1986;29(4):908–15.

    Article  CAS  PubMed  Google Scholar 

  113. Hackbarth R, Bunchman TE, Chua AN, Somers MJ, Baum M, Symons JM, et al. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30(12):1116–21.

    Article  CAS  PubMed  Google Scholar 

  114. Santiago MJ, Lopez-Herce J, Urbano J, Solana MJ, del Castillo J, Ballestero Y, et al. Complications of continuous renal replacement therapy in critically ill children: a prospective observational evaluation study. Crit Care. 2009;13(6):R184.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Everdell NL, Coulthard MG, Crosier J, Keir MJ. A machine for haemodialysing very small infants. Pediatr Nephrol. 2005;20(5):636–43.

    Article  PubMed  Google Scholar 

  116. Ronco C, Garzotto F, Ricci Z. CA.R.PE.DI.E.M. (Cardio-Renal Pediatric Dialysis Emergency Machine): evolution of continuous renal replacement therapies in infants. A personal journey. Pediatr Nephrol. 2012;27(8):1203–11.

    Article  PubMed  Google Scholar 

  117. Ronco C, Garzotto F, Brendolan A, Zanella M, Bellettato M, Vedovato S, et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet. 2014;383(9931):1807–13.

    Article  PubMed  Google Scholar 

  118. Askenazi D, Ingram D, White S, Cramer M, Borasino S, Coghill C, et al. Smaller circuits for smaller patients: improving renal support therapy with Aquadex. Pediatr Nephrol. 2016;31(5):853–60.

    Article  PubMed  Google Scholar 

  119. Menon S, Broderick J, Munshi R, Dill L, DePaoli B, Fathallah-Shaykh S, et al. Kidney support in children using an ultrafiltration device: a multicenter, retrospective study. Clin J Am Soc Nephrol. 2019;14(10):1432–40.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Burton BK. Inborn errors of metabolism in infancy: a guide to diagnosis. Pediatrics. 1998;102(6):E69.

    Article  CAS  PubMed  Google Scholar 

  121. Picca S, Dionisi-Vici C, Bartuli A, De Palo T, Papadia F, Montini G, et al. Short-term survival of hyperammonemic neonates treated with dialysis. Pediatr Nephrol. 2015;30(5):839–47.

    Article  PubMed  Google Scholar 

  122. Raina R, Bedoyan JK, Lichter-Konecki U, Jouvet P, Picca S, Mew NA, et al. Consensus guidelines for management of hyperammonaemia in paediatric patients receiving continuous kidney replacement therapy. Nat Rev Nephrol. 2020;16(8):471–82.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Stoops C, Boohaker L, Sims B, Griffin R, Selewski DT, Askenazi D, et al. The association of intraventricular hemorrhage and acute kidney injury in premature infants from the assessment of the worldwide acute kidney injury epidemiology in neonates (AWAKEN) study. Neonatology. 2019;116(4):321–30.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Starr MC, Boohaker L, Eldredge LC, Menon S, Griffin R, Mayock D, et al. Acute kidney injury is associated with poor lung outcomes in infants born >/=32 weeks of gestational age. Am J Perinatol. 2020;37(2):231–40.

    Article  PubMed  Google Scholar 

  125. Starr MC, Boohaker L, Eldredge LC, Menon S, Griffin R, Mayock DE, et al. Acute kidney injury and bronchopulmonary dysplasia in premature neonates born less than 32 weeks’ gestation. Am J Perinatol. 2020;37(3):341–8.

    Article  PubMed  Google Scholar 

  126. Gjerde A, Reisaeter AV, Skrunes R, Marti HP, Vikse BE. Intrauterine growth restriction and risk of diverse forms of kidney disease during the first 50 years of life. Clin J Am Soc Nephrol. 2020;15(10):1413–23.

    Article  CAS  PubMed  Google Scholar 

  127. Eriksson JG, Salonen MK, Kajantie E, Osmond C. Prenatal growth and CKD in older adults: longitudinal findings from the Helsinki birth cohort study, 1924–1944. Am J Kidney Dis. 2018;71(1):20–6.

    Article  PubMed  Google Scholar 

  128. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis. 2009;54(2):248–61.

    Article  PubMed  Google Scholar 

  129. Abitbol CL, Bauer CR, Montane B, Chandar J, Duara S, Zilleruelo G. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr Nephrol. 2003;18(9):887–93.

    Article  PubMed  Google Scholar 

  130. Vieux R, Gerard M, Roussel A, Sow A, Gatin A, Guillemin F, et al. Kidneys in 5-year-old preterm-born children: a longitudinal cohort monitoring of renal function. Pediatr Res. 2017;82(6):979–85.

    Article  PubMed  Google Scholar 

  131. Harer MW, Charlton JR, Tipple TE, Reidy KJ. Preterm birth and neonatal acute kidney injury: implications on adolescent and adult outcomes. J Perinatol. 2020;40(9):1286–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer G. Jetton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jetton, J.G., Vidal, E. (2021). Evaluation and Management of Acute Kidney Injury in Neonates. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics