Skip to main content

Autosomal Recessive Polycystic Kidney Disease

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pediatric Nephrology

Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is a monogenic disorder that primarily involves mutations in the PKHD1 gene, although rare, atypical forms of ARPKD due to mutations in other genes have recently been described. For years, pediatric nephrologists have directed the clinical management of these patients. However, there is increasing recognition that ARPKD has multisystem effects and a comprehensive care strategy requires a multidisciplinary team. In severely affected infants, the diagnosis is often first suspected by obstetricians based on detection of enlarged, echogenic kidneys and oligohydramnios on prenatal ultrasounds. Neonatologists are central to the care of these infants, who may have respiratory compromise due to pulmonary hypoplasia and massively enlarged kidneys. Variability in the clinical expression of ARPKD liver disease requires pediatric hepatology evaluation and management. Surgical considerations range from the advisability of nephrectomy to relieve mass effects, placement of dialysis access, and kidney and/or liver transplantation. Families of patients with ARPKD also face decisions regarding genetic testing of affected children, testing of asymptomatic siblings, or consideration of preimplantation genetic diagnosis for future pregnancies. These considerations require the expertise of genetic counselors, geneticists, and reproductive endocrinologists. This chapter will discuss the clinical and genetic diagnosis ARPKD, current insights into the genetics and pathobiology of this disorder, management of organ-specific complications, and close with considering future directions for prognostic prediction of disease outcomes and the development of targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bergmann C, et al. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4(1):50.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guay-Woodford LM. Autosomal recessive polycystic kidney disease: the prototype of the hepato-renal fibrocystic diseases. J Pediatr Genet. 2014;3(2):89–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Habbig S, Liebau MC. Ciliopathies – from rare inherited cystic kidney diseases to basic cellular function. Mol Cell Pediatr. 2015;2(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Guay-Woodford LM, et al. Consensus expert recommendations for the diagnosis and management of autosomal recessive polycystic kidney disease: report of an international conference. J Pediatr. 2014;165(3):611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gimpel C, et al. Perinatal diagnosis, management, and follow-up of cystic renal diseases: a clinical practice recommendation with systematic literature reviews. JAMA Pediatr. 2018;172(1):74–86.

    Article  PubMed  Google Scholar 

  6. Adeva M, et al. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine (Baltimore). 2006;85(1):1–21.

    Article  Google Scholar 

  7. Kaariainen H, Koskimies O, Norio R. Dominant and recessive polycystic kidney disease in children: evaluation of clinical features and laboratory data. Pediatr Nephrol. 1988;2(3):296–302.

    Article  CAS  PubMed  Google Scholar 

  8. Lombard EH, et al. Autosomal recessive polycystic kidney disease. Evidence for high frequency of the gene in the Afrikaans-speaking population. S Afr Med J. 1989;76(7):321–3.

    CAS  PubMed  Google Scholar 

  9. Bergmann C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr. 2018;5:221.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alzarka B, et al. Design and implementation of the hepatorenal fibrocystic disease core center clinical database: a centralized resource for characterizing autosomal recessive polycystic kidney disease and other hepatorenal fibrocystic diseases. Front Pediatr. 2017;5:80.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ward CJ, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. 2002;30(3):259–69.

    Article  PubMed  Google Scholar 

  12. Onuchic LF, et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet. 2002;70(5):1305–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu H, et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet. 2017;49(7):1025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zerres K, et al. Autosomal recessive polycystic kidney disease in 115 children: clinical presentation, course and influence of gender. Arbeitsgemeinschaft fur Padiatrische, Nephrologie. Acta Paediatr. 1996;85(4):437–45.

    Article  CAS  PubMed  Google Scholar 

  15. Gunay-Aygun M, et al. Hepatorenal findings in obligate heterozygotes for autosomal recessive polycystic kidney disease. Mol Genet Metab. 2011;104(4):677–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burgmaier K, et al. Risk factors for early dialysis dependency in autosomal recessive polycystic kidney disease. J Pediatr. 2018;199:22–8.e6.

    Article  PubMed  Google Scholar 

  17. Gimpel C, et al. Imaging of kidney cysts and cystic kidney diseases in children: an international working group consensus statement. Radiology. 2019;290(3):769–82.

    Article  PubMed  Google Scholar 

  18. Avni FE, et al. Hereditary polycystic kidney diseases in children: changing sonographic patterns through childhood. Pediatr Radiol. 2002;32(3):169–74.

    Article  PubMed  Google Scholar 

  19. Avni FE, Hall M. Renal cystic diseases in children: new concepts. Pediatr Radiol. 2010;40(6):939–46.

    Article  PubMed  Google Scholar 

  20. Iorio P, et al. The “salt and pepper” pattern on renal ultrasound in a group of children with molecular-proven diagnosis of ciliopathy-related renal diseases. Pediatr Nephrol. 2020;35(6):1033–40.

    Article  PubMed  Google Scholar 

  21. Capisonda R, et al. Autosomal recessive polycystic kidney disease: outcomes from a single-center experience. Pediatr Nephrol. 2003;18(2):119–26.

    Article  PubMed  Google Scholar 

  22. Hartung EA, Guay-Woodford LM. Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics. 2014;134(3):e833–45.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grantham JJ, Torres VE. The importance of total kidney volume in evaluating progression of polycystic kidney disease. Nat Rev Nephrol. 2016;12(11):667–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gunay-Aygun M, et al. Correlation of kidney function, volume and imaging findings, and PKHD1 mutations in 73 patients with autosomal recessive polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5(6):972–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Denamur E, et al. Genotype-phenotype correlations in fetuses and neonates with autosomal recessive polycystic kidney disease. Kidney Int. 2010;77(4):350–8.

    Article  CAS  PubMed  Google Scholar 

  26. Avner ED, et al. Congenital murine polycystic kidney disease. I. The ontogeny of tubular cyst formation. Pediatr Nephrol. 1987;1(4):587–96.

    Article  CAS  PubMed  Google Scholar 

  27. Nakanishi K, et al. Proximal tubular cysts in fetal human autosomal recessive polycystic kidney disease. J Am Soc Nephrol. 2000;11(4):760–3.

    Article  PubMed  Google Scholar 

  28. Desmet VJ. Ludwig symposium on biliary disorders–part I. Pathogenesis of ductal plate abnormalities. Mayo Clin Proc. 1998;73(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  29. Gunay-Aygun M, et al. Characteristics of congenital hepatic fibrosis in a large cohort of patients with autosomal recessive polycystic kidney disease. Gastroenterology. 2013;144(1):112–21.e2.

    Article  PubMed  Google Scholar 

  30. Guay-Woodford LM, Desmond RA. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics. 2003;111(5 Pt 1):1072–80.

    Article  PubMed  Google Scholar 

  31. Bergmann C, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005;67(3):829–48.

    Article  CAS  PubMed  Google Scholar 

  32. Burgmaier K, et al. Clinical courses and complications of young adults with autosomal recessive polycystic kidney disease (ARPKD). Sci Rep. 2019;9(1):7919.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Menezes LF, et al. Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int. 2004;66(4):1345–55.

    Article  CAS  PubMed  Google Scholar 

  34. Aachen University, R. Mutation database autosomal recessive polycystic kidney disease (ARPKD/PKHD1). 2013.

    Google Scholar 

  35. Rossetti S, Harris PC. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol. 2007;18(5):1374–80.

    Article  CAS  PubMed  Google Scholar 

  36. Abdul Majeed N, et al. Prospective evaluation of kidney and liver disease in autosomal recessive polycystic kidney disease-congenital hepatic fibrosis. Mol Genet Metab. 2020;131(1–2):267–76.

    Article  CAS  PubMed  Google Scholar 

  37. Burgmaier K, et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease (ARPKD) and PKHD1 variants. Kidney Int. in press.

    Google Scholar 

  38. Zvereff V, et al. Identification of PKHD1 multiexon deletions using multiplex ligation-dependent probe amplification and quantitative polymerase chain reaction. Genet Test Mol Biomarkers. 2010;14(4):505–10.

    Article  CAS  PubMed  Google Scholar 

  39. Ebner K, et al. Challenges in establishing genotype-phenotype correlations in ARPKD: case report on a toddler with two severe PKHD1 mutations. Pediatr Nephrol. 2017;32(7):1269–73.

    Article  PubMed  Google Scholar 

  40. Bergmann C, et al. Algorithm for efficient PKHD1 mutation screening in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat. 2005;25(3):225–31.

    Article  CAS  PubMed  Google Scholar 

  41. O’Connor A, Guay-Woodford L. The polycystic kidney diseases and other hepato-renal fibrocystic diseases: clinical phenotypes, molecular pathobiology, and variation between mouse and man. In: Little M, editor. Kidney development, repair, and regeneration. Elsevier; 2015. p. 241–64.

    Google Scholar 

  42. Yang C, et al. Cystin gene mutations cause autosomal recessive polycystic kidney disease associated with altered Myc expression. Sci Rep. in press.

    Google Scholar 

  43. Meienberg J, et al. New insights into the performance of human whole-exome capture platforms. Nucleic Acids Res. 2015;43(11):e76.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kerkar N, Norton K, Suchy FJ. The hepatic fibrocystic diseases. Clin Liver Dis. 2006;10(1):55–71, v–vi.

    Article  PubMed  Google Scholar 

  45. Cabezas OR, et al. Polycystic kidney disease with hyperinsulinemic hypoglycemia caused by a promoter mutation in phosphomannomutase 2. J Am Soc Nephrol. 2017;28(8):2529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gigarel N, et al. Preimplantation genetic diagnosis for autosomal recessive polycystic kidney disease. Reprod Biomed Online. 2008;16(1):152–8.

    Article  CAS  PubMed  Google Scholar 

  47. Nagasawa Y, et al. Identification and characterization of Pkhd1, the mouse orthologue of the human ARPKD gene. J Am Soc Nephrol. 2002;13:2246–58.

    Article  CAS  PubMed  Google Scholar 

  48. Bakeberg JL, et al. Epitope-tagged Pkhd1 tracks the processing, secretion, and localization of fibrocystin. J Am Soc Nephrol. 2011;22(12):2266–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Outeda P, et al. A novel model of autosomal recessive polycystic kidney questions the role of the fibrocystin C-terminus in disease mechanism. Kidney Int. 2017;92(5):1130–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ward CJ, et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet. 2003;12(20):2703–10.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang J, et al. Polycystic kidney disease protein fibrocystin localizes to the mitotic spindle and regulates spindle bipolarity. Hum Mol Genet. 2010;19(17):3306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lea WA, et al. Analysis of the polycystin complex (PCC) in human urinary exosome-like vesicles (ELVs). Sci Rep. 2020;10(1):1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaimori JY, et al. Polyductin undergoes notch-like processing and regulated release from primary cilia. Hum Mol Genet. 2007;16(8):942–56.

    Article  CAS  PubMed  Google Scholar 

  54. Hiesberger T, et al. Proteolytic cleavage and nuclear translocation of fibrocystin is regulated by intracellular Ca2+ and activation of protein kinase C. J Biol Chem. 2006;281(45):34357–64.

    Article  CAS  PubMed  Google Scholar 

  55. Cameron Varano A, et al. Preparation of disease-related protein assemblies for single particle electron microscopy. Methods Mol Biol. 2017;1647:185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garcia-Gonzalez MA, et al. Genetic interaction studies link autosomal dominant and recessive polycystic kidney disease in a common pathway. Hum Mol Genet. 2007;16(16):1940–50.

    Article  CAS  PubMed  Google Scholar 

  57. Kim I, et al. Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol. 2008;19(3):455–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olson RJ, et al. Synergistic genetic interactions between Pkhd1 and Pkd1 result in an ARPKD-like phenotype in murine models. J Am Soc Nephrol. 2019;30(11):2113–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaimori JY, et al. NEDD4-family E3 ligase dysfunction due to PKHD1/Pkhd1 defects suggests a mechanistic model for ARPKD pathobiology. Sci Rep. 2017;7(1):7733.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fedeles SV, Gallagher AR, Somlo S. Polycystin-1: a master regulator of intersecting cystic pathways. Trends Mol Med. 2014;20(5):251–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamaguchi T, et al. Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol. 2006;17(1):178–87.

    Article  CAS  PubMed  Google Scholar 

  62. Fischer DC, et al. Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD). Nephrol Dial Transplant. 2009;24(6):1819–27.

    Article  CAS  PubMed  Google Scholar 

  63. Haumann S, Muller RU, Liebau MC. Metabolic changes in polycystic kidney disease as a potential target for systemic treatment. Int J Mol Sci. 2020;21(17):6093.

    Article  CAS  PubMed Central  Google Scholar 

  64. Chumley P, et al. Truncating PKHD1 and PKD2 mutations alter energy metabolism. Am J Physiol Renal Physiol. 2019;316(3):F414–25.

    Article  PubMed  Google Scholar 

  65. Wang X, et al. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol. 2005;16(4):846–51.

    Article  CAS  PubMed  Google Scholar 

  66. Renken C, et al. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol Dial Transplant. 2011;26(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  67. Dell KM, et al. Kidney disease progression in autosomal recessive polycystic kidney disease. J Pediatr. 2016;171:196–201.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rohatgi R, et al. Na transport in autosomal recessive polycystic kidney disease (ARPKD) cyst lining epithelial cells. J Am Soc Nephrol. 2003;14(4):827–36.

    Article  CAS  PubMed  Google Scholar 

  69. van Stralen KJ, et al. Survival and clinical outcomes of children starting renal replacement therapy in the neonatal period. Kidney Int. 2014;86(1):168–74.

    Article  PubMed  Google Scholar 

  70. Carey WA, Martz KL, Warady BA. Outcome of patients initiating chronic peritoneal dialysis during the first year of life. Pediatrics. 2015;136(3):e615–22.

    Article  PubMed  Google Scholar 

  71. Akarkach A, et al. Maintenance peritoneal dialysis in children with autosomal recessive polycystic kidney disease: a comparative cohort study of the International Pediatric Peritoneal Dialysis Network registry. Am J Kidney Dis. 2020;75(3):460–4.

    Article  PubMed  Google Scholar 

  72. Overman RE, et al. Early nephrectomy in neonates with symptomatic autosomal recessive polycystic kidney disease. J Pediatr Surg. 2020;56(2):328–31.

    Article  PubMed  Google Scholar 

  73. Burgmaier K, et al. Severe neurological outcomes after very early bilateral nephrectomies in patients with autosomal recessive polycystic kidney disease (ARPKD). Sci Rep. 2020;10(1):16025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Davis ID, et al. Survival of childhood polycystic kidney disease following renal transplantation: the impact of advanced hepatobiliary disease. Pediatr Transplant. 2003;7(5):364–9.

    Article  PubMed  Google Scholar 

  75. Khan K, et al. Morbidity from congenital hepatic fibrosis after renal transplantation for autosomal recessive polycystic kidney disease. Am J Transplant. 2002;2(4):360–5.

    Article  PubMed  Google Scholar 

  76. Hartung EA, et al. Ultrasound elastography to quantify liver disease severity in autosomal recessive polycystic kidney disease. J Pediatr. 2019;209:107–15.e5.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hartung EA, et al. Magnetic resonance elastography to quantify liver disease severity in autosomal recessive polycystic kidney disease. Abdom Radiol (NY). 2020;46(2):570–80.

    Article  Google Scholar 

  78. MacAskill CJ, et al. Multi-parametric MRI of kidney disease progression for autosomal recessive polycystic kidney disease: mouse model and initial patient results. Pediatr Res. 2021;89(1):157–62.

    Article  PubMed  Google Scholar 

  79. Ghannam JS, et al. Technical success and outcomes in pediatric patients undergoing transjugular intrahepatic portosystemic shunt placement: a 20-year experience. Pediatr Radiol. 2019;49(1):128–35.

    Article  PubMed  Google Scholar 

  80. Wadsworth CA, et al. The risk factors and diagnosis of cholangiocarcinoma. Hepatol Int. 2013;7(2):377–93.

    Article  PubMed  Google Scholar 

  81. Srinath A, Shneider BL. Congenital hepatic fibrosis and autosomal recessive polycystic kidney disease. J Pediatr Gastroenterol Nutr. 2012;54(5):580–7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mekahli D, et al. Kidney versus combined kidney and liver transplantation in young people with autosomal recessive polycystic kidney disease: data from the European Society for Pediatric Nephrology/European renal association-European Dialysis and transplant (ESPN/ERA-EDTA) registry. Am J Kidney Dis. 2016;68(5):782–8.

    Article  PubMed  Google Scholar 

  83. Jalanko H, Pakarinen M. Combined liver and kidney transplantation in children. Pediatr Nephrol. 2014;29(5):805–14; quiz 812.

    Article  PubMed  Google Scholar 

  84. Buscher R, et al. Combined liver and kidney transplantation and kidney after liver transplantation in children: indication, postoperative outcome, and long-term results. Pediatr Transplant. 2015;19(8):858–65.

    Article  PubMed  Google Scholar 

  85. Brinkert F, et al. Combined liver-kidney transplantation for children with autosomal recessive polycystic kidney disease (ARPKD): indication and outcome. Transpl Int. 2013;26(6):640–50.

    Article  CAS  PubMed  Google Scholar 

  86. Ranawaka R, Dayasiri K, Gamage M. Combined liver and kidney transplantation in children and long-term outcome. World J Transplant. 2020;10(10):283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Guay-Woodford LM. Autosomal recessive polycystic kidney disease (ARPKD): new insights from the identification of the ARPKD gene, PKHD1. Pediatr Res. 2002;52(6):830–1.

    Article  PubMed  Google Scholar 

  88. Hartung EA, et al. Growth in children with autosomal recessive polycystic kidney disease in the CKiD cohort study. Front Pediatr. 2016;4:82.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Heuschkel RB, et al. ESPGHAN position paper on management of percutaneous endoscopic gastrostomy in children and adolescents. J Pediatr Gastroenterol Nutr. 2015;60(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  90. Burgmaier K, et al. Gastrostomy tube insertion in pediatric patients with autosomal recessive polycystic kidney disease (ARPKD): current practice. Front Pediatr. 2018;6:164.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Elchediak DS, et al. Extracranial aneurysms in 2 patients with autosomal recessive polycystic kidney disease. Case Rep Nephrol Dial. 2017;7:34–42.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chalhoub V, et al. Intracranial aneurysm and recessive polycystic kidney disease: the third reported case. JAMA Neurol. 2013;70(1):114–6.

    Article  PubMed  Google Scholar 

  93. Hartung EA, et al. Neurocognition in children with autosomal recessive polycystic kidney disease in the CKiD cohort study. Pediatr Nephrol. 2014;29(10):1957–65.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ebner K, et al. Rationale, design and objectives of ARegPKD, a European ARPKD registry study. BMC Nephrol. 2015;16:22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

MCL is supported by the German Federal Ministry of Research and Education (BMBF grant 01GM1903B, NEOCYST consortium) and the German Research Council (DFG Li 2397 5/1).

LGW is supported by the Polycystic Kidney Disease Research Resource Consortium (NIDDK U54 DK126087), the Clinical and Translational Science Institute at Children’s National (CTSI-CN) (NIH National Center for Advancing Translational Sciences, UL1TR001876), and a philanthropic gift from the Moran Family Foundation. The views expressed in this chapter reflect the personal opinions of the authors and not those of their respective organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Guay-Woodford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liebau, M.C., Guay-Woodford, L.M. (2022). Autosomal Recessive Polycystic Kidney Disease. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_117-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_117-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Autosomal Recessive Polycystic Kidney Disease
    Published:
    30 November 2021

    DOI: https://doi.org/10.1007/978-3-642-27843-3_117-2

  2. Original

    Autosomal Recessive Polycystic Kidney Diseases
    Published:
    22 September 2021

    DOI: https://doi.org/10.1007/978-3-642-27843-3_117-1