Skip to main content

Geometrical Reference Systems

  • Living reference work entry
  • First Online:

Abstract

Geometrical reference systems are the basis for the observation and quantification of processes in the Earth’s system, the study of Earth rotation, and the computation of satellite orbits, positioning, navigation, time realization, land surveying, and engineering. The reference systems applied today are the International Terrestrial Reference System (ITRS) co-rotating with the Earth and the International Celestial Reference System (ICRS), an inertial system. Both systems are defined and realized by the International Earth Rotation and Reference Systems Service (IERS).

The systems are realized by reference frames constituted by physical points, i.e., the reference points of observation instruments fixed to the Earth’s crust or the reference points of radio sources, respectively.

The reference frames are computed from the observations of VLBI in case of ICRS and by a combination of VLBI, SLR, GNSS, and DORIS data in case of ITRS. Each of the techniques provides an individual sensitivity regarding the frame parameters and contributes in a unique way to the ITRS realization.

The ITRS realization is performed by two or more so-called IERS Combination Centres today. The combination of the space techniques by the centers is performed at different levels of the Gauß-Markov model, the normal equation, and the parameter level. Therefore, the strategies differ with respect to rigorousness and hence their dependence on operator decisions.

The most rigorous combination method is the combination at the observation level, but the softwares able to handle all four observation techniques are still under development so that this strategy is not yet applied for IERS product generation.

Due to the low regional density of observing stations, the ITRS realizations has to be densified by regional reference frames, to allow for precise applications on a regional basis. The regional frames are based on GNSS stations only.

The strategies applied for the realization of reference systems are continuously refined in the recent years. Anyway, further efforts are necessary to improve the strategies with respect to their rigorousness in order to meet the accuracy requirements of applications related to the quantification of the global change, which are about 1 mm for positions and 1 mm/year for long-term trends.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex__cont.html, 2013-03-06.

References

  • Adam J (2008) Update of the history of the International Association of Geodesy. J Geod 82: 662–674

    Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller S, Tesmer V (2004) ITRS Combination Centre at DGFI – A Terrestrial Reference Frame Realization 2003, Deutsche Geodätische Kommission, Reihe B, München

    Google Scholar 

  • Angermann D, Seitz M, Drewes H (2012) Global Terrestrial Reference Systems and Their Realizations. In: Xu G (ed) Sciences of geodesy – II. Springer, pp 97–132. doi:10.1007/978-3-642-28000-9_3

    Google Scholar 

  • Beutler G, Drewes H, Verdun A (2004) The new structure of the International Association of Geodesy viewed from the perspective of history. J Geod 77:566–575

    Article  Google Scholar 

  • Bloßfeld M, Müller H, Seitz M, Angermann D (2011) Benefits of SLR in epoch reference frames. In: Proceedings of the 17th ILRS workshop, Bad Kötzting, Germany

    Google Scholar 

  • Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84:201–219. doi:10.1007/s00190-009-0357-7

    Article  Google Scholar 

  • Brunini C, Sánchez L, Drewes H, Costa S, Mackern V, Martinez W, Seemüller W, da Silva A (2012) Improved analysis strategy and accessibility of the SIRGAS reference frame. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for Planet Earth, International Association of Geodesy Symposia, vol 136, pp 3–10. doi:10.1007/978-3-642-20338-1_1

    Chapter  Google Scholar 

  • Capitaine N, Gambis D, McCarthy D, Pétit G, Ray J, Richter B, Rothacher M, Standish M, Vondrak J (eds) (2002) Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions 2002, IERS Technical Note 29, Verlag des Bundesamts fur Kartographie und Geodäsie, Frankfurt am Main, available at http://www.iers.org/iers/publications/tn/tn29/

  • DeMets C, Gordon R, Argus D, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions. Geophys Res Lett 21(20):2191–2194. doi:10.1029/94GL02118

    Article  Google Scholar 

  • Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Drewes H, Heidbach O (2009) The 2009 horizontal velocity field for South America and the Caribbean. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for Planet Earth. International Association of Geodesy Symposia, vol 136, pp 657–664. doi:10.1007/978-3-642-20338-1_81

    Chapter  Google Scholar 

  • Feissel M, Migard F (1998) The adoption of the ICRS on 1 January 1998: meaning and consequences. Astron Astrophys 331:L33–L36

    Google Scholar 

  • Hazard C, Sutton J, Argue A, Kenworthy C, Morrison L, Murray C (1971) Accurate radio and optical positions of 3C273B. Nat Phys Sci 233:89–91. doi:10.1038/physci233089a0

    Article  Google Scholar 

  • IERS (2009) The second realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. In: Fey A, Gordon D, Jacobs C (eds) Presented on behalf of the IERS/IVS Working Group (2009), IERS Technical Note 35, Verlag des Bundesamtes für Geodäsie und Kartographie, Frankfurt am Main

    Google Scholar 

  • IERS (2010) IERS Conventions (2010). Pétit G, Luzum B (eds) IERS Technical Note 36, Verlag des Bundesamtes für Geodäsie und Kartographie, Frankfurt am Main

    Google Scholar 

  • Johnston G, Dawson J (2004) The 2003 Mount Pleasant (Hobart) radio telescope local tie survey. Geoscience Australia, Record 2004/21

    Google Scholar 

  • Koch K (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Lieske J, Lederle T, Fricke W, Morando B (1977) Expression for the Precession Quantities Based upon the IAU (1976) System of Astronomical Constants. Astron Astrophys 58:1–16

    Google Scholar 

  • Ma C, Arias E, Eubanks T, Fey A, Gontier A, Jacobs C, Sovers O, Archinal B, Charlot P (1997) The International Celestial Reference Frame Realized by VLBI. In: Ma C, Feissel M (eds) Definition and Realization of the International Celestial Reference System by VLBI Astrometry of Extragalactic Objects. IERS Technical Note 23, Observatoire de Paris

    Google Scholar 

  • Ma C, Arias E, Eubanks T, Fey A, Gontier A, Jacobs C, Sovers O, Archinal B, Charlot P (1998) The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry. Astron J 116(1):516–546. doi:10.1086/300408

    Article  Google Scholar 

  • Mathews P, Herring T, Buett B (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth, and insights into the Earth’s interior. J Geophys Res 107(B4):ETG 3-1–ETG 3-26. doi:10.1029/2001JB000390

    Google Scholar 

  • Michel V, Roesch G, Long J (2005) Hartebeesthoek Co-location Survey. In: Richter B, Dick W, Schwegmann W (eds) Proceedings of the IERS workshop on site co-location. IERS Technical Note 33:100–109, Verlag des Bundesamtes für Geodäsie und Kartographie, Frankfurt am Main

    Google Scholar 

  • Plag H-P, Pearlman M (eds) (2009) Global Geodetic Observing System – Meeting the Requirements of a Global Society on a Changing Planet in 2020. Springer. ISBN:978-3-642-02686-7

    Google Scholar 

  • Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Rothacher M (2000) Towards an integrated global geodetic observing system. In: Rummel R, Drewes H, Bosch W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS). International Association of Geodesy Symposia, vol 120. Springer, pp 41–52. doi:10.1007/978-3-642-59745-9_7

    Google Scholar 

  • Sánchez L, Seemüller W, Drewes H, Mateo L, González G, Silva A, Pampillón J, Martinez W, Cioce V, Cisneros D, Cimbaro S (2013) Long-term stability of the SIRGAS reference frame and episodic station movements caused by the seismic activity in the SIRGAS region. In: Altamimi Z, Collilieux X (eds) Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, vol 138. Springer, pp 153–161. doi:10.1007/978-3-642-32998-2_24

    Google Scholar 

  • Sarti P, Sillard P, Vittuari L (2004) Surveying co-located space-geodetic instruments for ITRF computation. J Geod 78(3):210–222. doi:10.1007/s00190-004-0387-0

    Article  Google Scholar 

  • Schlüter W. and Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8):379–387. doi:10.1007/s00190-006-0131-z

    Article  Google Scholar 

  • Schön S. and Kutterer H (2006) A comparative analysis of uncertainty modelling in GPS data analysis. In: Tregoning P, Rizos C (eds) Dynamic Planet. International Association of Geodesy Symposia, vol 130, pp 137–142. doi:10.1007/978-3-540-49350-1_22

    Chapter  Google Scholar 

  • Seeber G (2013) Satellite Geodesy. de Gruyter. ISBN:9783110175493

    Google Scholar 

  • Seidelmann K (1982) 1980 IAU Nutation: The Final Report of the IAU Working Group on Nutation. Celest Mech 27:79–106. doi:10.1007/BF01228952

    Article  MathSciNet  Google Scholar 

  • Seitz F, Schmidt M (2005) Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering. J Geophys Res 110(B11):EID B11406. American Geophysical Union. ISSN:0148-0227, doi:10.1029/2005JB003826

    Google Scholar 

  • Seitz F, Schuh H (2011) Earth rotation. In: Xu G (ed) Sciences of Geodesy I: Advances and Future Directions. Springer, pp 185–227. ISBN (Print):978-3-642-11740-4, ISBN (Online):978-3-642-11741-1, doi:10.1007/978-3-642-11741-1_6

    Google Scholar 

  • Seitz M (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems, Deutsche Geodätische Kommission, Reihe C, Heft Nr. 630, München

    Google Scholar 

  • Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012a) The 2008 DGFI realization of ITRS: DTRF2008. J Geod 86(12):1097–1123. doi:0.1007/s00190-012-0567-2

    Google Scholar 

  • Seitz M, Steigenberger P, Artz T (2012b) Consistent adjustment of combined terrestrial and celestial reference frames. In: Rizos C, Willis P (eds) Earth on the Edge: Science for a Sustainable Planet, International Association of Geodesy Symposia, vol 139, pp 215–221, Springer, doi: 10.1007/978-3-642-37222-3_28, 2014

    Google Scholar 

  • Seitz M, Steigenberger P, Artz T (2012c) Consistent realization of ITRS and ICRS. In: Behrend D, Baver K (eds) Launching the next-generation IVS network. International VLBI Service for Geodesy and Astrometry 2012 General Meeting Proceedings, NASA/CP-2012-217502: 314-318

    Google Scholar 

  • Seitz M, Angermann D, Drewes H (2013) Accuracy assessment of ITRS 2008 realization of DGFI: DTRF2008. In: Altamimi Z, Collilieux X (eds) Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, vol 138. Springer, pp 87–93. doi:10.1007/978-3-642-32998-2_15

    Google Scholar 

  • Sengenes P, Tavernier G, Granier J (2002) Doppler measurement principle in a brief overview of Doris system evolutions. Presentation at the IDS workshop 2002, Biarritz, France

    Google Scholar 

  • Sovers O, Fanselow J, Jacobs C (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70:1393–1454. doi:10.1103/RevModPhys.70.1393

    Article  Google Scholar 

  • Takahashi F, Kondo T, Takahashi Y, Koyama Y (2000) Very Long Baseline Interferometer. Wave Summit Course. Ohmsha, Ltd./IOS Press. ISBN:1-58603-076-0

    Google Scholar 

  • Teunissen P, Kleusberg A (1998) GPS for Geodesy. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Willis P, Boucher C, Fagard H, Altamimi Z (2005) Geodetic application of the DORIS system at the French Institut Geographique National. C R Geosci 337(7):653–662. doi:10.1016/j.crte.2005.03.002

    Article  Google Scholar 

  • Willis P, Fagard H, Ferrage P, Lemoine F, Noll C, Noomen R, Otten M, Ries J, Rothacher M, Soudarin L, Tavernier G, Valette J (2010) The International DORIS Service (IDS): Toward maturity. In DORIS Special Issue: Scientific Applications in Geodesy and Geodynamics. Adv Space Res 45(12):1408–1420. doi:10.1016/j.asr.2009.11.018

    Google Scholar 

  • Willis P, Gobinddass M, Garayt B, Fagard H (2012) Recent improvements in DORIS data processing in view of ITRF2008, the ignwd08 solution. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for Planet Earth. International Association of Geodesy Symposia, Springer, vol 136, pp 43–49. doi:10.1007/978-3-642-20338-1_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Seitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Seitz, M., Angermann, D., Gerstl, M., Bloßfeld, M., Sánchez, L., Seitz, F. (2014). Geometrical Reference Systems. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_79-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_79-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics