Skip to main content

Sensors Based on In-Pixel Photo-Mixing Devices

  • Chapter
  • First Online:
TOF Range-Imaging Cameras

Abstract

The first Time-Of-Flight (TOF) 3D scanning systems were realized in the 1970s for military and space applications [1]. Both pulsed operation and CW modulation, either AM or FM, were used. Scanning systems have steadily improved in the following decades [24], evolving into commercial products for 3D metrology and modelling applications, although their cost remains high due to the requirements of the scanning mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Besl, Active optical range imaging sensors. Mach. Vis. Appl. 37, 127–152 (1988)

    Article  Google Scholar 

  2. K. Määttä, J. Kostamovaara, R. Myllylä, Profiling of hot surface by pulsed Time-Of-Flight laser range finder technique. Appl. Opt. 32(27), 5334–5347 (1993)

    Article  Google Scholar 

  3. P. Palojärvi, K. Määttä, J. Kostamovaara, Integrated Time-Of-Flight laser radar. IEEE Trans. Instrum. Meas. 46(4), 996–999 (1997)

    Article  Google Scholar 

  4. D. Dupuy, M. Lescure, and M. Cousineau, “A FMCW laser rangefinder based on a delay line technique” in Proc. IEEE Instrumentation and Measurement Technology Conference, pp. 1084–1088 (2001)

    Google Scholar 

  5. M. Kawakita, K. Iizuka, R. Iwama, K. Takizawa, H. Kikuchi, F. Sato, Gain-modulated Axi-Vision Camera (high speed high-accuracy depth-mapping camera). Opt. Express 12, 5336–5344 (2004)

    Article  Google Scholar 

  6. A.A. Dorrington, M.J. Cree, A.D. Payne, R.M. Conroy, D.A. Carnegie, Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera. Meas. Sci. Technol. 18(9), 2809–2816 (2007)

    Article  Google Scholar 

  7. T. Spirig, P. Seitz, O. Vietze, F. Heitger, The lock-in CCD two dimensional synchronous detection of light. IEEE J. Quantum Electron. 31, 1705–1708 (1995)

    Article  Google Scholar 

  8. R. Miyagawa, T. Kanade, CCD-based range-finding sensor. IEEE Transaction on Electron Devices 44(10), 1648–1652 (1997)

    Article  Google Scholar 

  9. R. Schwarte, Z. Xu, H. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fisher, J. Schulte, A new electrooptical mixing and correlating sensor: facilities and applications of the Photonic Mixer Device (PMD). Proc. SPIE 3100, 245–253 (1997)

    Article  Google Scholar 

  10. S. Kawahito, I.A. Halin, T. Ushinaga, T. Sawada, M. Homma, Y. Maeda, A CMOS Time-Of-Flight Range Image Sensor With Gates-on-Field-Oxide Structure. IEEE Sens. J. 7(12), 1578–1586 (2007)

    Article  Google Scholar 

  11. D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, L. Gonzo, A Range Image Sensor Based on 10-μm Lock-In Pixels in 0.18-μm CMOS Imaging Technology. IEEE J. Solid-State Circuits 46(1), 248–258 (2011)

    Article  Google Scholar 

  12. S.-J. Kim, J.D.K. Kim, S.-W. Han; B. Kang, K. Lee, C.-Y. Kim “A 640 × 480 image sensor with unified pixel architecture for 2D/3D imaging in 0.11 μm CMOS”, IEEE Symposium on VLSI Circuits, pp. 92–93, June 2011

    Google Scholar 

  13. O. Elkhalili, O.M. Schrey, P. Mengel, M. Petermann, W. Brockherde, B.J. Hosticka, A 4 x 64 pixel CMOS image sensor for 3-D measurements applications. IEEE J. Solid-State Circuits 39(7), 1208–1212 (2004)

    Article  Google Scholar 

  14. D. Stoppa, L. Viarani, A. Simoni, L. Gonzo, M. Malfatti and G. Pedretti, “A 50x30-pixel CMOS Sensor for TOF-based Real Time 3D Imaging”, Proc. of the 2005 Workshop on Charge-Coupled Devices and Advanced Image Sensors, (Nagano, Japan, 2005)

    Google Scholar 

  15. G. Zach, M. Davidovic, H. Zimmermann, A 16 x 16 Pixel Distance Sensor With In-Pixel Circuitry That Tolerates 150 klx of Ambient Light. IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010)

    Article  Google Scholar 

  16. C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, Single-Photon Synchronous Detection. IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009)

    Article  Google Scholar 

  17. L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, A 32x32 SPAD Pixel Array with Nanosecond Gating and Analog Readout (Proc, IISW, 2011). (Hokkaido, Japan, 2011)

    Google Scholar 

  18. See for example: PMD technologies (www.pmdtec.com), MESA imaging AG (www.mesa-imaging.ch), SoftKinetic (www.softkinetic.com), Panasonic (www.pewa.panasonic.com), Fotonic (www.fotonic.com)

  19. B. Buttgen, F. Lustenberger, P. Seitz, Demodulation Pixel Based on Static Drift Fields. IEEE Trans. Electron Devices 53(11), 2741–2747 (2006)

    Article  Google Scholar 

  20. R. Lange, 3D Time-Of-Flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology (University of Siegen, Siegen, Germany, PhD dissertation, 2003)

    Google Scholar 

  21. R. Lange, P. Seitz, Solid-state Time-Of-Flight range camera. IEEE J. Quantum Electron. 37(3), 390–397 (2001)

    Article  Google Scholar 

  22. B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, N. Blanc, Demonstration of a Novel Drift Field Pixel Structure for the Demodulation of Modulated Light Waves with Application in Three-Dimensional Image Capture. Proc. SPIE 5302, 9–20 (2004)

    Article  Google Scholar 

  23. T. Möller, H. Kraft, J. Frey, M. Albrecht, R. Lange, “Robust 3D Measurement with PMD Sensors”, Proceedings of the 1st Range Imaging Research Day at ETH (Zurich, Switzerland, 2005)

    Google Scholar 

  24. R. Schwarte, Dynamic 3D vision. Proceedings EDMO 2001, 241–248 (2001)

    Google Scholar 

  25. B. Büttgen, M.-A. El Mechat, F. Lustenberger, P. Seitz, Pseudonoise Optical Modulation for Real-Time 3-D Imaging With Minimum Interference. IEEE Transactions on Circuits and Systems I 54(10), 2109–2119 (2007)

    Article  Google Scholar 

  26. P. Gulden, D. Becker, M. Vossiek, Novel optical distance sensor based on MSM technology. IEEE Sensors J. 4(5), 612–618 (2004)

    Article  Google Scholar 

  27. R. Lange, P. Seitz, A. Biber, S. Lauxtermann, Demodulation Pixels in CCD and CMOS Technologies for Time-Of-Flight Ranging. Proc. SPIE 3965, 177–188 (2000)

    Article  Google Scholar 

  28. P. Seitz, “Image sensing device and method of”, US patent 2006/0108611A1

    Google Scholar 

  29. D. Van Nieuwenhove, W. Van Der Tempel, M. Kuijk, Novel standard CMOS detector using majority current for guiding photo-generated electrons towards detecting junctions (Proc. IEEE/LEOS Symp, Benelux Chapter, 2005), pp. 229–232

    Google Scholar 

  30. L. Pancheri, D. Stoppa, N. Massari, M. Malfatti, C. Piemonte, G.-F. Dalla Betta,”Current Assisted Photonic Mixing Devices fabricated on High Resistivity Silicon”, Proc. IEEE Sensors 2008, (Lecce,Italy, 2008), pp. 981–983

    Google Scholar 

  31. W. van der Tempel, R. Grootjans, D. Van Nieuwenhove and M. Kuijk “A 1 k-pixel 3-D CMOS sensor”, Proc. IEEE Sensors Conference, pp.1000–1003 (2008)

    Google Scholar 

  32. G.-F. Dalla Betta, S. Donati, Q.D. Hossain, G. Martini, L. Pancheri, D. Saguatti, D. Stoppa, G. Verzellesi, Design and Characterization of Current-Assisted Photonic Demodulators in 0.18-μm CMOS Technology. IEEE Trans. Electron Devices 58(6), 1702–1709 (2011)

    Article  Google Scholar 

  33. L. Pancheri, D. Stoppa, N. Massari, M. Malfatti, L. Gonzo, Q. D. Hossain, G.-F. Dalla Betta, “A 120x160 pixel CMOS range image sensor based on current assisted photonic demodulators”, Proc. SPIE, Vol. 7726, 2010, pp. 772615 (SPIE Photonics Europe, Brussels, Belgium, 2010)

    Google Scholar 

  34. V. Berezin, A. Krymski, and E. R. Fossum, “Lock-in pinned photodiode photodetector,” US Patent 2003/0213984A1, Nov. 2003

    Google Scholar 

  35. A. Theuwissen, CMOS Image Sensors: State-Of-The-Art and Future Perspectives (Proc, IEEE ESSDERC, 2007). (Munich, Germany, 2007)

    Google Scholar 

  36. E.R. Fossum, “Charge Transfer Noise and Lag in CMOS Active Pixel Sensors”, Proc. of 2003 IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (Schloss Elmau, Bavaria, Germany, May 2003)

    Google Scholar 

  37. D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “An 80 x 60 Range Image Sensor based on 10um 50 MHz Lock-In Pixels in 0.18um CMOS”, Proc. ISSCC 2010, San Francisco, 7-11 Feb. 2010

    Google Scholar 

  38. S.-J. Kim, S.-W. Han, B. Kang, K. Lee, J.D.K. Kim, C.-Y. Kim, A Three-Dimensional Time-Of-Flight CMOS Image Sensor With Pinned-Photodiode Pixel Structure. IEEE Electron Device Lett. 31(11), 1272–1274 (2010)

    Google Scholar 

  39. H.-J. Yoon, S. Itoh and S. Kawahito “A CMOS image sensor with in-pixel two-stage charge transfer for fluorescence lifetime imaging”, IEEE Trans. Electron Devices, Vol. 56, No. 2, pp.214–221 (2009)

    Google Scholar 

  40. L.-E. Bonjour, T. Baechler, M. Kayal, High-Speed General Purpose demodulation pixels based on buried photodiodes (Proc, IISW, 2011). (Hokkaido, Japan, 8.–11. June 2011)

    Google Scholar 

  41. C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, P. Magnan, High Speed Dual Port Pinned-photodiode for Time-Of-Flight Imaging (Proc, IISW, 2009). (Bergen, Norway, June 26.-28. 2009)

    Google Scholar 

  42. H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, S. Kawahito, High-speed charge transfer pinned-photodiode for a CMOS Time-Of-Flight range image sensor. Proc. SPIE 7536, 75360R (2010)

    Article  Google Scholar 

  43. S.J. Kim, S.W. Han, “Image sensor and operating method”, US patent 2011/0198481 A1

    Google Scholar 

  44. D. Durini, A. Spickermann, R. Mahdi, W. Brockherde, H. Vogt, A. Grabmaier, B.J. Hosticka, Lateral drift-field photodiode for low noise, high-speed, large photoactive-area CMOS imaging applications. Nuclear Instruments and Methods in Physics Research A 624(2), 470–475 (2010)

    Article  Google Scholar 

  45. A. Spickermann, D. Durini, A. Suss, W. Ulfig, W. Brockherde, B.J. Hosticka, S. Schwope, A. Grabmaier, CMOS 3D image sensor based on pulse modulated Time-Of-Flight principle and intrinsic lateral drift-field photodiode pixels. Proc. ESSCIRC 2011, 111–114 (2011)

    Google Scholar 

  46. S. Kawahito, Z. Li, K. Yasutomi, “A CMOS image sensor with draining only demodulation pixels for time-resolved imaging,” Proc. IISW 2011, pp.185–188, (Hokkaido, Japan, 8.–11. June 2011)

    Google Scholar 

  47. S.M. Sze, D.J. Coleman Jr, A. Loya, Current transport in metal-semiconductor- metal (MSM) structures. Solid-State Electon. 14, 1209–1218 (1971)

    Article  Google Scholar 

  48. H. Kraft, J. Frey, T. Moeller, M. Albrecht, M. Grothof, B. Schink, H. Hess, B. Buxmbaum, “3D-camera of high 3D-frame rate, depth-resolution and background light elimination based on improved PMD (Photonic Mixer Device)-technologies”, Proc, OPTO 2004 (Nuernberg, Germany, 2004)

    Google Scholar 

  49. C. Bamji, H. Yalcin, “Methods and devices for improved charge management for three-dimensional and color sensing”, US patent 7,352,454 B2

    Google Scholar 

  50. F. De Nisi, D. Stoppa, M. Scandiuzzo, L. Gonzo, L. Pancheri, G.-F. Dalla Betta, “Design of electro-optical demodulating pixel in CMOS technology”, Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2005), pp. 572–575, (Kobe, Japan, 23–26 May 2005)

    Google Scholar 

  51. K. Oberhauser, G. Zach, A. Nemecek, H. Zimmermann, Monolythically Integrated Optical Distance Measurement Sensor with Double-Cathode Photodetector (Proc, IMTC, 2007). (Warsaw, Poland, May 1–3, 2007)

    Google Scholar 

  52. T. Spirig, M. Marley, P. Seitz, The multitap lock-in CCD with offset subtraction. IEEE Trans. Electron Devices 44(10), 1643–1647 (1997)

    Article  Google Scholar 

  53. T. Oggier, R. Kaufmann, M. Lehmann, B. Büttgen, S. Neukom, M. Richter, M. Schweizer, P. Metzler, F. Lustenberger, N. Blanc, Novel Pixel Architecture with Inherent Background Suppression for 3D Time-Of-Flight Imaging. Proc. SPIE 5665, 1–8 (2005)

    Article  Google Scholar 

  54. M. Lehmann, T. Oggier, B. Büttgen, C. Gimkiewicz, M. Schweizer, R. Kaufmann, F. Lustenberger, N. Blanc, Smart Pixels for Future 3D-TOF Sensors (Proc, IISW, 2005). (Nagano, Japan, 9.-11. June 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Pancheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pancheri, L., Stoppa, D. (2013). Sensors Based on In-Pixel Photo-Mixing Devices. In: Remondino, F., Stoppa, D. (eds) TOF Range-Imaging Cameras. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27523-4_4

Download citation

Publish with us

Policies and ethics