Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Harmonic analysis techniques are established and successful tools in a variety of application areas, with the Fourier decomposition as one well-known example. In this chapter, we describe recent work on possible approaches to use Harmonic Analysis on fields of arbitrary type to facilitate global feature extraction and visualization. We find that a global approach is hampered by significant computational costs, and thus describe a local framework for harmonic vector field analysis to address this concern. In addition to a description of our approach, we provide a high-level overview of mathematical concepts underlying it and address practical modeling and calculation issues. As a potential application, we demonstrate the definition of empirical features based on local harmonic analysis of vector fields that reduce field data to low dimensional feature sets and offers possibilities for visualization and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop, R., Goldberg, S.: Tensor Analysis on Manifolds. Dover Publications, New York (1968)

    Google Scholar 

  2. Demmel, J.W., Gilbert, J., Li, X.S.: SuperLU users’ guide. Tech. rep. CSD-97-944, University of California (1997)

    Google Scholar 

  3. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, pp. 39–54. ACM, New York (2006)

    Google Scholar 

  4. Dong, S., timo Bremer, P., Garl, M.: Spectral surface quadrangulation. ACM Trans. Graph. 25, 1057–1066 (2006)

    Google Scholar 

  5. Dragomir, S., Perrone, D.: Harmonic Vector Fields: Variational Principles and Differential Geometry. Elsevier Science Ltd, Oxford (2011)

    Google Scholar 

  6. Ebling, J., Scheuermann, G.: Clifford convolution and pattern matching on vector fields. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 26. IEEE Computer Society, Piscataway (2003)

    Google Scholar 

  7. Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11(4), 469–479 (2005)

    Google Scholar 

  8. Elcott, S., Schröder, P.: Building your own DEC at home. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, p. 8. ACM, New York (2005)

    Google Scholar 

  9. Elcott, S., Tong, Y., Kanso, E., Schröder, P., Desbrun, M.: Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 4-es (2007). doi:http://doi.acm.org/10.1145/1189762.1189766

    Google Scholar 

  10. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Fisher, M., Schröder, P.: Design of tangent vector fields. ACM Trans. Graph. 26, 56 (2007)

    Google Scholar 

  12. Flanders, H.: Differential forms with applications to the physical sciences. Dover Publications, Mineola (1989)

    Google Scholar 

  13. Fletcher, C.: Computational Galerkin Methods. Springer Series in Computational Physics. Springer, New York (1984)

    Google Scholar 

  14. Galerkin, B.G.: On electrical circuits for the approximate solution of the laplace equation. Vestnik Inzh. 19, 897–908 (1915)

    Google Scholar 

  15. Heath, M.: Scientific Computing. McGraw-Hill, Boston (2002)

    Google Scholar 

  16. Hirani, A.: Discrete exterior calculus. Ph.D. thesis, California Institute of Technology (2003)

    Google Scholar 

  17. Huebner, K., Dewhirst, D., Smith, D., Byrom, T.: The Finite Element Method for Engineers. Wiley India Pvt. Ltd., New York (2008)

    Google Scholar 

  18. Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge/New York (2004)

    Google Scholar 

  19. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    Google Scholar 

  20. Lehoucq, R., Sorensen, D.C., Yang, C.: Arpack users guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. Communication 6(3), 147 (1998). Tech. Rep., SIAM, Philadelphia. citeseer.ist.psu.edu/article/lehoucq97arpack.html

    Google Scholar 

  21. Loan, G., Golub, G.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  22. Reuter, M., Wolter, F., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, Cambridge, p. 106. ACM, New York (2005)

    Google Scholar 

  23. Schlemmer, M., Heringer, M., Morr, F., Hotz, I., Hering-Bertram, M., Garth, C., Kollmann, W., Hamann, B., Hagen, H.: Moment invariants for the analysis of 2D flow fields. IEEE Trans. Vis. Comput. Graph. 13(6), 1743 (2007)

    Google Scholar 

  24. Sorensen, D.: Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations. Institute for Computer Applications in Science and Engineering, Hampton. In: Keyes, D.E., Sameh, A., Venkatakrishnan, V. (eds.) Contractor, pp. 1–34. Kluwer, New York (1996)

    Google Scholar 

  25. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 351–358, ACM, New York (1995)

    Google Scholar 

  26. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06, pp. 201–210. Eurographics Association, Aire-la-Ville (2006). URL http://dl.acm.org/citation.cfm?id=1281957.1281983

  27. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Comput. Graph. Forum (Proceedings Eurographics) 27, 251–260 (2008)

    Google Scholar 

  28. Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete laplace operators: no free lunch. In: SIGGRAPH Asia ’08: ACM SIGGRAPH ASIA 2008 Courses, pp. 1–5. ACM, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this paper

Cite this paper

Wagner, C., Garth, C., Hagen, H. (2012). Harmonic Field Analysis. In: Laidlaw, D., Vilanova, A. (eds) New Developments in the Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27343-8_19

Download citation

Publish with us

Policies and ethics