Skip to main content

Circadian Clocks and Metabolism

  • Chapter
  • First Online:
Circadian Clocks

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 217))

Abstract

Circadian clocks maintain periodicity in internal cycles of behavior, physiology, and metabolism, enabling organisms to anticipate the 24-h rotation of the Earth. In mammals, circadian integration of metabolic systems optimizes energy harvesting and utilization across the light/dark cycle. Disruption of clock genes has recently been linked to sleep disorders and to the development of cardiometabolic disease. Conversely, aberrant nutrient signaling affects circadian rhythms of behavior. This chapter reviews the emerging relationship between the molecular clock and metabolic systems and examines evidence that circadian disruption exerts deleterious consequences on human health.

Biliana Marcheva, Kathryn M. Ramsey, Clara B. Peek, Alison Affinati, Eleonore Maury have equally-contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahima RS, Prabakaran D, Flier JS (1998) Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest 101:1020–1027

    Article  PubMed  CAS  Google Scholar 

  • Akashi M, Takumi T (2005) The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 12:441–448

    Article  PubMed  CAS  Google Scholar 

  • Albrecht U (2013) Circadian clocks and mood-related behaviors. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Ando H, Ushijima K, Kumazaki M, Eto T, Takamura T, Irie S, Kaneko S, Fujimura A (2010) Associations of metabolic parameters and ethanol consumption with messenger RNA expression of clock genes in healthy men. Chronobiol Int 27:194–203

    Article  PubMed  CAS  Google Scholar 

  • Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G, Fulton DJ, Rudic RD (2009) Vascular disease in mice with a dysfunctional circadian clock. Circulation 119:1510–1517

    Article  PubMed  Google Scholar 

  • Antoch MP, Kondratov RV (2013) Pharmacological modulators of the circadian clock as potential therapeutic drugs: focus on genotoxic/anticancer therapy. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity 17:2100–2102

    Article  PubMed  Google Scholar 

  • Arlt W (2009) The approach to the adult with newly diagnosed adrenal insufficiency. J Clin Endocrinol Metab 94:1059–1067

    Article  PubMed  CAS  Google Scholar 

  • Arslanian S, Ohki Y, Becker DJ, Drash AL (1990) Demonstration of a dawn phenomenon in normal adolescents. Horm Res 34:27–32

    Article  PubMed  CAS  Google Scholar 

  • Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137

    Article  PubMed  CAS  Google Scholar 

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  PubMed  CAS  Google Scholar 

  • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953

    Article  PubMed  CAS  Google Scholar 

  • Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  PubMed  CAS  Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347

    Article  PubMed  CAS  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330: 1349–1354

    Article  PubMed  CAS  Google Scholar 

  • Bechtold DA, Gibbs JE, Loudon AS (2010) Circadian dysfunction in disease. Trends Pharmacol Sci 31:191–198

    Article  PubMed  CAS  Google Scholar 

  • Berger JP (2005) Role of PPARgamma, transcriptional cofactors, and adiponectin in the regulation of nutrient metabolism, adipogenesis and insulin action: view from the chair. Int J Obes 29(Suppl 1):S3–S4

    Article  CAS  Google Scholar 

  • Blakemore AI, Meyre D, Delplanque J, Vatin V, Lecoeur C, Marre M, Tichet J, Balkau B, Froguel P, Walley AJ (2009) A rare variant in the visfatin gene (NAMPT/PBEF1) is associated with protection from obesity. Obesity 17:1549–1553

    Article  PubMed  CAS  Google Scholar 

  • Bolli GB, De Feo P, De Cosmo S, Perriello G, Ventura MM, Calcinaro F, Lolli C, Campbell P, Brunetti P, Gerich JE (1984) Demonstration of a dawn phenomenon in normal human volunteers. Diabetes 33:1150–1153

    Article  PubMed  CAS  Google Scholar 

  • Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai JY, Bugger H, Zhang D et al (2008) Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294:H1036–H1047

    Article  PubMed  CAS  Google Scholar 

  • Brown SA, Azzi A (2013) Peripheral circadian oscillators in mammals. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I, Ben-Shushan A, Ford I (2005) Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 9:41–50

    Article  PubMed  Google Scholar 

  • Bur IM, Cohen-Solal AM, Carmignac D, Abecassis PY, Chauvet N, Martin AO, van der Horst GT, Robinson IC, Maurel P, Mollard P et al (2009) The circadian clock components CRY1 and CRY2 are necessary to sustain sex dimorphism in mouse liver metabolism. J Biol Chem 284:9066–9073

    Article  PubMed  CAS  Google Scholar 

  • Cailotto C, La Fleur SE, Van Heijningen C, Wortel J, Kalsbeek A, Feenstra M, Pevet P, Buijs RM (2005) The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved? Eur J Neurosci 22:2531–2540

    Article  PubMed  Google Scholar 

  • Challet E (2010) Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J Comp Physiol B 180:631–644

    Article  PubMed  Google Scholar 

  • Challet E, Pevet P, Lakhdar-Ghazal N, Malan A (1997) Ventromedial nuclei of the hypothalamus are involved in the phase advance of temperature and activity rhythms in food-restricted rats fed during daytime. Brain Res Bull 43:209–218

    Article  PubMed  CAS  Google Scholar 

  • Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou QY (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417:405–410

    Article  PubMed  CAS  Google Scholar 

  • Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23: 10691–10702

    PubMed  CAS  Google Scholar 

  • Chung S, Son GH, Kim K (2011) Adrenal peripheral oscillator in generating the circadian glucocorticoid rhythm. Ann NY Acad Sci 1220:71–81

    Article  PubMed  CAS  Google Scholar 

  • Clough G (1982) Environmental effects on animals used in biomedical research. Biol Rev Camb Philos Soc 57:487–523

    Article  PubMed  CAS  Google Scholar 

  • Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    Article  PubMed  CAS  Google Scholar 

  • Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50: 1714–1719

    Article  PubMed  CAS  Google Scholar 

  • Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA (2007) Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci USA 104:3450–3455

    Article  PubMed  CAS  Google Scholar 

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  PubMed  CAS  Google Scholar 

  • Dauchy RT, Blask DE, Sauer LA, Brainard GC, Krause JA (1999) Dim light during darkness stimulates tumor progression by enhancing tumor fatty acid uptake and metabolism. Cancer Lett 144:131–136

    Article  PubMed  CAS  Google Scholar 

  • Davidson AJ, London B, Block GD, Menaker M (2005) Cardiovascular tissues contain independent circadian clocks. Clin Exp Hypertens 27:307–311

    PubMed  CAS  Google Scholar 

  • Delaunay F, Laudet V (2002) Circadian clock and microarrays: mammalian genome gets rhythm. Trends Genet 18:595–597

    Article  PubMed  CAS  Google Scholar 

  • Di Lorenzo L, De Pergola G, Zocchetti C, L’Abbate N, Basso A, Pannacciulli N, Cignarelli M, Giorgino R, Soleo L (2003) Effect of shift work on body mass index: results of a study performed in 319 glucose-tolerant men working in a Southern Italian industry. Int J Obes Relat Metab Disord 27:1353–1358

    Article  PubMed  Google Scholar 

  • Dickmeis T, Foulkes NS (2011) Glucocorticoids and circadian clock control of cell proliferation: at the interface between three dynamic systems. Mol Cell Endocrinol 331:11–22

    Article  PubMed  CAS  Google Scholar 

  • Doherty CJ, Kay SA (2010) Circadian control of global gene expression patterns. Annu Rev Genet 44:419–444

    Article  PubMed  CAS  Google Scholar 

  • Donga E, van Dijk M, van Dijk JG, Biermasz NR, Lammers GJ, van Kralingen KW, Corssmit EP, Romijn JA (2010) A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J Clin Endocrinol Metab 95:2963–2968

    Article  PubMed  CAS  Google Scholar 

  • Douris N, Kojima S, Pan X, Lerch-Gaggl AF, Duong SQ, Hussain MM, Green CB (2011) Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes. Curr Biol 21:1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, Masana MI (2003) Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci 8:d1093–d1108

    Article  PubMed  CAS  Google Scholar 

  • Duez H, Staels B (2009) Rev-erb-alpha: an integrator of circadian rhythms and metabolism. J Appl Physiol 107:1972–1980

    Article  PubMed  CAS  Google Scholar 

  • Dufour CR, Levasseur MP, Pham NH, Eichner LJ, Wilson BJ, Charest-Marcotte A, Duguay D, Poirier-Heon JF, Cermakian N, Giguere V (2011) Genomic convergence among ERRalpha, PROX1, and BMAL1 in the control of metabolic clock outputs. PLoS Genet 7:e1002143

    Article  PubMed  CAS  Google Scholar 

  • Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116

    Article  PubMed  CAS  Google Scholar 

  • Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–464

    PubMed  CAS  Google Scholar 

  • Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM (2005) Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25:2795–2807

    Article  PubMed  CAS  Google Scholar 

  • Ekmekcioglu C, Touitou Y (2011) Chronobiological aspects of food intake and metabolism and their relevance on energy balance and weight regulation. Obes Rev 12:14–25

    Article  PubMed  CAS  Google Scholar 

  • Ellingsen T, Bener A, Gehani AA (2007) Study of shift work and risk of coronary events. J R Soc Promot Health 127:265–267

    Article  PubMed  CAS  Google Scholar 

  • Englund A, Kovanen L, Saarikoski ST, Haukka J, Reunanen A, Aromaa A, Lonnqvist J, Partonen T (2009) NPAS2 and PER2 are linked to risk factors of the metabolic syndrome. J Circadian Rhythms 7:5

    Article  PubMed  CAS  Google Scholar 

  • Farshchi HR, Taylor MA, Macdonald IA (2005) Deleterious effects of omitting breakfast on insulin sensitivity and fasting lipid profiles in healthy lean women. Am J Clin Nutr 81:388–396

    PubMed  CAS  Google Scholar 

  • Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ (2010) Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA 107: 18664–18669

    Article  PubMed  CAS  Google Scholar 

  • Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1:1311–1314

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G et al (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93

    Article  PubMed  CAS  Google Scholar 

  • Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, Maratos-Flier E, Flier JS (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51:811–822

    Article  PubMed  CAS  Google Scholar 

  • Garaulet M, Lee YC, Shen J, Parnell LD, Arnett DK, Tsai MY, Lai CQ, Ordovas JM (2009) CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids. Am J Clin Nutr 90:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Garaulet M, Corbalan-Tutau MD, Madrid JA, Baraza JC, Parnell LD, Lee YC, Ordovas JM (2010a) PERIOD2 variants are associated with abdominal obesity, psycho-behavioral factors, and attrition in the dietary treatment of obesity. J Am Diet Assoc 110:917–921

    Article  PubMed  CAS  Google Scholar 

  • Garaulet M, Lee YC, Shen J, Parnell LD, Arnett DK, Tsai MY, Lai CQ, Ordovas JM (2010b) Genetic variants in human CLOCK associate with total energy intake and cytokine sleep factors in overweight subjects (GOLDN population). Eur J Hum Genet 18:364–369

    Article  PubMed  CAS  Google Scholar 

  • Garaulet M, Sanchez-Moreno C, Smith CE, Lee YC, Nicolas F, Ordovas JM (2011) Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and weight loss. PLoS One 6:e17435

    Article  PubMed  CAS  Google Scholar 

  • Gerozissis K (2003) Brain insulin: regulation, mechanisms of action and functions. Cell Mol Neurobiol 23:1–25

    Article  PubMed  Google Scholar 

  • Gomez-Abellan P, Hernandez-Morante JJ, Lujan JA, Madrid JA, Garaulet M (2008) Clock genes are implicated in the human metabolic syndrome. Int J Obes 32:121–128

    Article  CAS  Google Scholar 

  • Gottlieb DJ, Punjabi NM, Newman AB, Resnick HE, Redline S, Baldwin CM, Nieto FJ (2005) Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch Intern Med 165:863–867

    Article  PubMed  Google Scholar 

  • Green CB, Douris N, Kojima S, Strayer CA, Fogerty J, Lourim D, Keller SR, Besharse JC (2007) Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci USA 104:9888–9893

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi B, Sassone-Corsi P (2007) Circadian rhythms: metabolic clockwork. Nature 447: 386–387

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi B, Nakahata Y, Kaluzova M, Masubuchi S, Sassone-Corsi P (2009) Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1. Int J Biochem Cell Biol 41:81–86

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954

    Article  PubMed  CAS  Google Scholar 

  • Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103:10230–10235

    Article  PubMed  CAS  Google Scholar 

  • Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM et al (2011) Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 41:139–149

    Article  PubMed  CAS  Google Scholar 

  • Herxheimer A, Petrie KJ (2002) Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev: CD001520

    Google Scholar 

  • Hirota T, Kay SA (2009) High-throughput screening and chemical biology: new approaches for understanding circadian clock mechanisms. Chem Biol 16:921–927

    Article  PubMed  CAS  Google Scholar 

  • Hirota T, Lewis WG, Liu AC, Lee JW, Schultz PG, Kay SA (2008) A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta. Proc Natl Acad Sci USA 105:20746–20751

    Article  PubMed  CAS  Google Scholar 

  • Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–125

    Article  PubMed  CAS  Google Scholar 

  • Horvath TL (2005) The hardship of obesity: a soft-wired hypothalamus. Nat Neurosci 8:561–565

    Article  PubMed  CAS  Google Scholar 

  • Horvath TL, Gao XB (2005) Input organization and plasticity of hypocretin neurons: possible clues to obesity’s association with insomnia. Cell Metab 1:279–286

    Article  PubMed  CAS  Google Scholar 

  • Huang JY, Hirschey MD, Shimazu T, Ho L, Verdin E (2010) Mitochondrial sirtuins. Biochim Biophys Acta 1804:1645–1651

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Ivanisevic-Milovanovic OK, Demajo M, Karakasevic A, Pantic V (1995) The effect of constant light on the concentration of catecholamines of the hypothalamus and adrenal glands, circulatory hadrenocorticotropin hormone and progesterone. J Endocrinol Invest 18:378–383

    PubMed  CAS  Google Scholar 

  • Jetten AM (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 7:e003

    PubMed  Google Scholar 

  • Kallen J, Schlaeppi JM, Bitsch F, Delhon I, Fournier B (2004) Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A. J Biol Chem 279:14033–14038

    Article  PubMed  CAS  Google Scholar 

  • Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    Article  PubMed  CAS  Google Scholar 

  • Kalra SP, Bagnasco M, Otukonyong EE, Dube MG, Kalra PS (2003) Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul Pept 111:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek A, Fliers E (2013) Daily regulation of hormone profiles. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Kalsbeek A, Fliers E, Romijn JA, La Fleur SE, Wortel J, Bakker O, Endert E, Buijs RM (2001) The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142:2677–2685

    Article  PubMed  CAS  Google Scholar 

  • Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58:747–752

    Article  PubMed  CAS  Google Scholar 

  • Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS (2003) Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int Arch Occup Environ Health 76:424–430

    Article  PubMed  Google Scholar 

  • Kil IS, Lee SK, Ryu KW, Woo HA, Hu MC, Bae SH, Rhee SG (2012) Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol Cell 46:584–594

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Cheong HS, Park BL, Baik SH, Park S, Lee SW, Kim MH, Chung JH, Choi JS, Kim MY et al (2011) Melatonin receptor 1 B polymorphisms associated with the risk of gestational diabetes mellitus. BMC Med Genet 12:82

    Article  PubMed  CAS  Google Scholar 

  • Knutson KL, Van Cauter E (2008) Associations between sleep loss and increased risk of obesity and diabetes. Ann NY Acad Sci 1129:287–304

    Article  PubMed  Google Scholar 

  • Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421

    Article  PubMed  CAS  Google Scholar 

  • Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5:e34

    Article  PubMed  CAS  Google Scholar 

  • Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294: 2511–2515

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Takahashi JS (2010) PARP around the clock. Cell 142:841–843

    Article  PubMed  CAS  Google Scholar 

  • Kwak SH, Kim SH, Cho YM, Go MJ, Cho YS, Choi SH, Moon MK, Jung HS, Shin HD, Kang HM et al (2012) A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes 61:531–541

    Article  PubMed  CAS  Google Scholar 

  • la Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM (2001) A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50:1237–1243

    Article  PubMed  Google Scholar 

  • Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 105:15172–15177

    Article  PubMed  CAS  Google Scholar 

  • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440

    Article  PubMed  CAS  Google Scholar 

  • Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480: 552–556

    PubMed  CAS  Google Scholar 

  • Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Sasso GL, Moschetta A, Schibler U (2009) REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 7:e1000181

    Article  PubMed  CAS  Google Scholar 

  • Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20:7128–7136

    Article  PubMed  Google Scholar 

  • Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee Y, Lee MJ, Park E, Kang SH, Chung CH, Lee KH, Kim K (2008) Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol 28:6056–6065

    Article  PubMed  CAS  Google Scholar 

  • Li S, Lin JD (2009) Molecular control of circadian metabolic rhythms. J Appl Physiol 107: 1959–1964

    Article  PubMed  CAS  Google Scholar 

  • Li C, Shi Y, You L, Wang L, Chen ZJ (2011) Melatonin receptor 1A gene polymorphism associated with polycystic ovary syndrome. Gynecol Obstet Invest 72:130–134

    Article  PubMed  CAS  Google Scholar 

  • Ling Y, Li X, Gu Q, Chen H, Lu D, Gao X (2011) A common polymorphism rs3781637 in MTNR1B is associated with type 2 diabetes and lipids levels in Han Chinese individuals. Cardiovasc Diabetol 10:27

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper CB (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci 21:4864–4874

    PubMed  CAS  Google Scholar 

  • Lu XY, Shieh KR, Kabbaj M, Barsh GS, Akil H, Watson SJ (2002) Diurnal rhythm of agouti-related protein and its relation to corticosterone and food intake. Endocrinology 143: 3905–3915

    Article  PubMed  CAS  Google Scholar 

  • Lucas RJ, Stirland JA, Mohammad YN, Loudon AS (2000) Postnatal growth rate and gonadal development in circadian tau mutant hamsters reared in constant dim red light. J Reprod Fertil 118:327–330

    Article  PubMed  CAS  Google Scholar 

  • Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spegel P, Bugliani M, Saxena R, Fex M, Pulizzi N et al (2009) Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 41:82–88

    Article  PubMed  CAS  Google Scholar 

  • Mamontova A, Seguret-Mace S, Esposito B, Chaniale C, Bouly M, Delhaye-Bouchaud N, Luc G, Staels B, Duverger N, Mariani J et al (1998) Severe atherosclerosis and hypoalphalipoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORalpha. Circulation 98: 2738–2743

    Article  PubMed  CAS  Google Scholar 

  • Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631

    Article  PubMed  CAS  Google Scholar 

  • Marcheva B, Ramsey KM, Bass J (2011) Circadian genes and insulin exocytosis. Cell Logist 1: 32–36

    Article  PubMed  Google Scholar 

  • Maron BJ, Kogan J, Proschan MA, Hecht GM, Roberts WC (1994) Circadian variability in the occurrence of sudden cardiac death in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 23:1405–1409

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Chiba S, Yasuda T, Noguchi H, Kakuma T, Watanabe T, Sakata T, Yoshimatsu H (2004) Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes 53:2250–2260

    Article  PubMed  CAS  Google Scholar 

  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, Walker JR, Hogenesch JB, Takahashi JS, Esser KA (2007) Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics 31:86–95

    Article  PubMed  CAS  Google Scholar 

  • Megirian D, Dmochowski J, Farkas GA (1998) Mechanism controlling sleep organization of the obese Zucker rats. J Appl Physiol 84:253–256

    PubMed  CAS  Google Scholar 

  • Menaker M (1976) Physiological and biochemical aspects of circadian rhythms. Fed Proc 35:2325

    PubMed  CAS  Google Scholar 

  • Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL (1999) Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140:207–218

    Article  PubMed  CAS  Google Scholar 

  • Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci USA 103:12150–12155

    Article  PubMed  CAS  Google Scholar 

  • Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA 104:3342–3347

    Article  PubMed  CAS  Google Scholar 

  • Minneman KP, Lynch H, Wurtman RJ (1974) Relationship between environmental light intensity and retina-mediated suppression of rat pineal serotonin-N-acetyl-transferase. Life Sci 15: 1791–1796

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger RE (2011) Neurobiology of food anticipatory circadian rhythms. Physiol Behav 104: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Guarente L (2009) Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging 1: 578–581

    PubMed  CAS  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  PubMed  CAS  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  PubMed  CAS  Google Scholar 

  • Nilsson PM, Roost M, Engstrom G, Hedblad B, Berglund G (2004) Incidence of diabetes in middle-aged men is related to sleep disturbances. Diabetes Care 27:2464–2469

    Article  PubMed  Google Scholar 

  • Noshiro M, Usui E, Kawamoto T, Kubo H, Fujimoto K, Furukawa M, Honma S, Makishima M, Honma K, Kato Y (2007) Multiple mechanisms regulate circadian expression of the gene for cholesterol 7alpha-hydroxylase (Cyp7a), a key enzyme in hepatic bile acid biosynthesis. J Biol Rhythms 22:299–311

    Article  PubMed  CAS  Google Scholar 

  • O’Neill J, Maywood L, Hastings M (2013) Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi G, Ohkura N, Azama T, Mesaki M, Yukimasa S et al (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278:41519–41527

    Article  PubMed  CAS  Google Scholar 

  • Okamura H, Doi M, Yamaguchi Y, Fustin JM (2011) Hypertension due to loss of clock: novel insight from the molecular analysis of Cry1/Cry2-deleted mice. Curr Hypertens Rep 13:103–108

    Article  PubMed  CAS  Google Scholar 

  • Okano S, Akashi M, Hayasaka K, Nakajima O (2009) Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice. Neurosci Lett 451:246–251

    Article  PubMed  CAS  Google Scholar 

  • Oklejewicz M, Hut RA, Daan S, Loudon AS, Stirland AJ (1997) Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters. J Biol Rhythms 12:413–422

    PubMed  CAS  Google Scholar 

  • O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503

    Article  PubMed  CAS  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558

    Article  PubMed  CAS  Google Scholar 

  • Orth DN, Island DP (1969) Light synchronization of the circadian rhythm in plasma cortisol (17-OHCS) concentration in man. J Clin Endocrinol Metab 29:479–486

    Article  PubMed  CAS  Google Scholar 

  • Orth DN, Besser GM, King PH, Nicholson WE (1979) Free-running circadian plasma cortisol rhythm in a blind human subject. Clin Endocrinol 10:603–617

    Article  CAS  Google Scholar 

  • Oster MH, Castonguay TW, Keen CL, Stern JS (1988) Circadian rhythm of corticosterone in diabetic rats. Life Sci 43:1643–1645

    Article  PubMed  CAS  Google Scholar 

  • Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4:163–173

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002a) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Hogenesch JB, Kay SA (2002b) Circadian rhythms from flies to human. Nature 417: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Pedrazzoli M, Secolin R, Esteves LO, Pereira DS, Koike Bdel V, Louzada FM, Lopes-Cendes I, Tufik S (2010) Interactions of polymorphisms in different clock genes associated with circadian phenotypes in humans. Genet Mol Biol 33:627–632

    Article  PubMed  Google Scholar 

  • Peschke E, Muhlbauer E (2010) New evidence for a role of melatonin in glucose regulation. Best Pract Res Clin Endocrinol Metab 24:829–841

    Article  PubMed  CAS  Google Scholar 

  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  PubMed  CAS  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  PubMed  CAS  Google Scholar 

  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:1638–1646

    Article  CAS  Google Scholar 

  • Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, Wong GK, Chesham J, Odell M, Lilley KS et al (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1991) Pineal gland interface between the photoperiodic environment and the endocrine system. Trends Endocrinol Metab 2:13–19

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418: 935–941

    Article  PubMed  CAS  Google Scholar 

  • Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F (2011) Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9:e1000595

    Article  PubMed  CAS  Google Scholar 

  • Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38:369–374

    Article  PubMed  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, Murillo-Rodriguez E, Giuffrida A, LoVerme J, Gaetani S et al (2001) An anorexic lipid mediator regulated by feeding. Nature 414:209–212

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22:939–943

    Article  PubMed  CAS  Google Scholar 

  • Ronn T, Wen J, Yang Z, Lu B, Du Y, Groop L, Hu R, Ling C (2009) A common variant in MTNR1B, encoding melatonin receptor 1B, is associated with type 2 diabetes and fasting plasma glucose in Han Chinese individuals. Diabetologia 52:830–833

    Article  PubMed  CAS  Google Scholar 

  • Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377

    Article  PubMed  CAS  Google Scholar 

  • Rudic RD, McNamara P, Reilly D, Grosser T, Curtis AM, Price TS, Panda S, Hogenesch JB, FitzGerald GA (2005) Bioinformatic analysis of circadian gene oscillation in mouse aorta. Circulation 112:2716–2724

    Article  PubMed  CAS  Google Scholar 

  • Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  PubMed  CAS  Google Scholar 

  • Sadacca LA, Lamia KA, Delemos AS, Blum B, Weitz CJ (2010) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54:120–124

    Article  PubMed  CAS  Google Scholar 

  • Sahar S, Nin V, Barbosa MT, Chini EN, Sassone-Corsi P (2011) Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging 3:794–802

    PubMed  Google Scholar 

  • Sakamoto K, Nagase T, Fukui H, Horikawa K, Okada T, Tanaka H, Sato K, Miyake Y, Ohara O, Kako K, Ishida N (1998) Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J Biol Chem 273:27039–27042

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157

    Article  PubMed  CAS  Google Scholar 

  • Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537

    Article  PubMed  CAS  Google Scholar 

  • Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26:5489–5504

    Article  PubMed  CAS  Google Scholar 

  • Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106:4453–4458

    Article  PubMed  CAS  Google Scholar 

  • Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24:345–357

    Article  PubMed  CAS  Google Scholar 

  • Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103:10224–10229

    Article  PubMed  CAS  Google Scholar 

  • Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM et al (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12: 654–661

    Article  PubMed  CAS  Google Scholar 

  • Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 102:12071–12076

    Article  PubMed  CAS  Google Scholar 

  • Shimomura Y, Takahashi M, Shimizu H, Sato N, Uehara Y, Negishi M, Inukai T, Kobayashi I, Kobayashi S (1990) Abnormal feeding behavior and insulin replacement in STZ-induced diabetic rats. Physiol Behav 47:731–734

    Article  PubMed  CAS  Google Scholar 

  • Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382: 810–813

    Article  PubMed  CAS  Google Scholar 

  • Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, Marco C, Caro JF (1996) Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 97:1344–1347

    Article  PubMed  CAS  Google Scholar 

  • Slat E, Freeman GM Jr, Herzog ED (2013) The clock in the brain: neurons, glia and networks in daily rhythms. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ (2009) Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci USA 106: 17582–17587

    Article  PubMed  CAS  Google Scholar 

  • Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812

    Article  PubMed  CAS  Google Scholar 

  • Sonoda J, Pei L, Evans RM (2008) Nuclear receptors: decoding metabolic disease. FEBS Lett 582: 2–9

    Article  PubMed  CAS  Google Scholar 

  • Sookoian S, Castano G, Gemma C, Gianotti TF, Pirola CJ (2007) Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease. World J Gastroenterol 13:4242–4248

    PubMed  CAS  Google Scholar 

  • Sookoian S, Gemma C, Gianotti TF, Burgueno A, Castano G, Pirola CJ (2008) Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr 87:1606–1615

    PubMed  CAS  Google Scholar 

  • Sookoian S, Gianotti TF, Burgueno A, Pirola CJ (2010) Gene-gene interaction between serotonin transporter (SLC6A4) and CLOCK modulates the risk of metabolic syndrome in rotating shiftworkers. Chronobiol Int 27:1202–1218

    Article  PubMed  CAS  Google Scholar 

  • Spiegel K, Tasali E, Leproult R, Van Cauter E (2009) Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 5:253–261

    Article  PubMed  CAS  Google Scholar 

  • Staels B (2006) When the Clock stops ticking, metabolic syndrome explodes. Nat Med 12:54–55, discussion 55

    Article  PubMed  CAS  Google Scholar 

  • Staiger D, Koster T (2011) Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci 68:71–83

    Article  PubMed  CAS  Google Scholar 

  • Staiger H, Machicao F, Schafer SA, Kirchhoff K, Kantartzis K, Guthoff M, Silbernagel G, Stefan N, Haring HU, Fritsche A (2008) Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine beta-cell function. PLoS One 3:e3962

    Article  PubMed  CAS  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  PubMed  CAS  Google Scholar 

  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    Article  PubMed  CAS  Google Scholar 

  • Szafarczyk A, Ixart G, Malaval F, Nouguier-Soule J, Assenmacher I (1979) Effects of lesions of the suprachiasmatic nuclei and of p-chlorophenylalanine on the circadian rhythms of adrenocorticotrophic hormone and corticosterone in the plasma, and on locomotor activity of rats. J Endocrinol 83:1–16

    Article  PubMed  CAS  Google Scholar 

  • Taheri S, Lin L, Austin D, Young T, Mignot E (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1:e62

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi F, Katsuya T, Chakrewarthy S, Yamamoto K, Fujioka A, Serizawa M, Fujisawa T, Nakashima E, Ohnaka K, Ikegami H et al (2010) Common variants at the GCK, GCKR, G6PC2-ABCB11 and MTNR1B loci are associated with fasting glucose in two Asian populations. Diabetologia 53:299–308

    Article  PubMed  CAS  Google Scholar 

  • Tam CH, Ho JS, Wang Y, Lee HM, Lam VK, Germer S, Martin M, So WY, Ma RC, Chan JC et al (2010) Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS One 5: e11428

    Article  PubMed  CAS  Google Scholar 

  • Teboul M, Grechez-Cassiau A, Guillaumond F, Delaunay F (2009) How nuclear receptors tell time. J Appl Physiol 107:1965–1971

    Article  PubMed  CAS  Google Scholar 

  • Torra IP, Tsibulsky V, Delaunay F, Saladin R, Laudet V, Fruchart JC, Kosykh V, Staels B (2000) Circadian and glucocorticoid regulation of Rev-erbalpha expression in liver. Endocrinology 141:3799–3806

    Article  PubMed  CAS  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  PubMed  CAS  Google Scholar 

  • Van Cauter E, Polonsky KS, Scheen AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18:716–738

    Article  PubMed  Google Scholar 

  • Vogel G (2011) Cell biology. Telling time without turning on genes. Science 331:391

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, Symons JD, Schnermann JB, Gonzalez FJ, Litwin SE, Yang T (2008) Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 8:482–491

    Article  PubMed  CAS  Google Scholar 

  • Wilsbacher LD, Yamazaki S, Herzog ED, Song EJ, Radcliffe LA, Abe M, Block G, Spitznagel E, Menaker M, Takahashi JS (2002) Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo. Proc Natl Acad Sci USA 99:489–494

    Article  PubMed  CAS  Google Scholar 

  • Woon PY, Kaisaki PJ, Braganca J, Bihoreau MT, Levy JC, Farrall M, Gauguier D (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA 104:14412–14417

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K, Yasuda A, Mamine T, Takumi T (2005) Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J Biol Chem 280:42036–42043

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Lamia KA, Evans RM (2007) Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb Symp Quant Biol 72:387–394

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Liu A, Weidenhammer A, Cooksey RC, McClain D, Kim MK, Aguilera G, Abel ED, Chung JH (2009) The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150:2153–2160

    Article  PubMed  CAS  Google Scholar 

  • Yildiz BO, Suchard MA, Wong ML, McCann SM, Licinio J (2004) Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci USA 101: 10434–10439

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA (2007) Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–1789

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101: 5339–5346

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Kaasik K, Blackburn MR, Lee CC (2006) Constant darkness is a circadian metabolic signal in mammals. Nature 439:340–343

    Article  PubMed  CAS  Google Scholar 

  • Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y et al (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156

    Article  PubMed  CAS  Google Scholar 

  • Zuber AM, Centeno G, Pradervand S, Nikolaeva S, Maquelin L, Cardinaux L, Bonny O, Firsov D (2009) Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci USA 106:16523–16528

    Article  PubMed  CAS  Google Scholar 

  • Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

C.B. Peek, A. Affinati and B. Marcheva are supported by NIH grants F32 DK092034-01, 1F30DK085936-01A1, and T32 DK007169, respectively. J. Bass is supported by NIH grants R01 HL097817-01, R01 DK090625-01A1, and P01 AG011412, the American Diabetes Association, the Chicago Biomedical Consortium Searle Funds, and the University of Chicago Diabetes Research and Training Center (grant P60 DK020595).

Disclosures J. Bass is a member of the scientific advisory board of ReSet Therapeutics Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marcheva, B., Ramsey, K.M., Peek, C.B., Affinati, A., Maury, E., Bass, J. (2013). Circadian Clocks and Metabolism. In: Kramer, A., Merrow, M. (eds) Circadian Clocks. Handbook of Experimental Pharmacology, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25950-0_6

Download citation

Publish with us

Policies and ethics