Skip to main content

The Use of Photosynthetic Fluorescence Parameters from Autotrophic Biofilms for Monitoring the Effect of Chemicals in River Ecosystems

  • Chapter
  • First Online:
Emerging and Priority Pollutants in Rivers

Abstract

Photosynthetic processes play a key role in aquatic ecosystems. These processes are highly sensitive to the presence of toxicants, leading to an increase in their use as ecotoxicological endpoints. The use of chlorophyll-a fluorescence techniques to assess the impact of toxicants on the photosynthesis of the autotrophic component of fluvial biofilms has increased in the last decades. However, these photosynthetic endpoints are not currently used in water quality monitoring programs.

A review of the currently available literature—including studies dealing with toxicity assessment of both priority and emerging compounds—allowed the discussion of the pros and cons of their use as ecotoxicological endpoints in fluvial systems as well as their inclusion in regular monitoring programs.

Chlorophyll-a fluorescence measurements have the ability to detect effects of a large panel of chemical substances on the photosynthetic processes of fluvial biofilms, covering both functional and structural aspects of the biofilm community. Moreover, they might provide early warning signals of toxic effects.

Thus, the application of the chlorophyll-a fluorescence measurement is recommended as a complementary measurement of toxic stress in aquatic ecosystems. Their application is of special interest in the context of the Water Framework Directive (WFD, Directive 2000/60/EC), where the development of new structural and functional endpoints of the biological quality elements (e.g., biofilms) is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AL:

Actinic light

BQE:

Biological quality element

F:

Fluorescence yield at the maximal reduced state

Fe:

Ferrodoxin

Fm:

Maximal fluorescence yield

Fm′:

Fluorescence yield at actinic light steady state

Fo:

Minimal fluorescence yield

Fo(Bl):

Fluorescence signal linked to cyanobacteria group

Fo(Br):

Fluorescence signal linked to diatoms’ algal group

Fo(Gr):

Fluorescence signal linked to green-algae algal group

Fo/Fv:

Efficiency of the water-splitting apparatus of PSII

Fo′:

Fluorescence yield when actinic light is omitted

Fv:

Variable fluorescence yield

Fv/2:

Fluorescence measurment of plastoquinone pool

ML:

Measuring light

NPQ:

Non-photochemical quenching without measuring Fo′

PAM:

Pulse amplitude modulated

PEA:

Plant efficiency analyzer

Pheo:

Pheophytin

PQ:

Plastoquinone pool

PQA :

Plastoquinone A

PQB :

Plastoquinone B

PS:

Photosystem

PSI:

Photosystem I

PSII:

Photosystem II

qN:

Non-photochemical quenching

qP:

Photochemical quenching

SP:

Saturation pulse

UQDrel :

Relative unquenched fluorescence

WFD:

Water framework directive

ΦPSII :

Effective quantum yield of PSII

Φ PSII :

Maximal quantum yield of PSII

References

  1. Taiz L, Zeiger E (eds) (1999) Physiologie der Pflanzen. Spektrum Akad. Vlg., Heidelberg

    Google Scholar 

  2. Juneau P, Dewez D, Matsui S, Kim SG, Popovic R (2001) Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry. Chemosphere 45:589–598

    Article  CAS  Google Scholar 

  3. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol 42:313–349

    Article  CAS  Google Scholar 

  4. Schreiber U, Bilger W, Neubaurer C (1994) Chlorophyll fluorescence as a non-invasive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Calswell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70

    Google Scholar 

  5. Kautsky H, Franck U (1943) Chlorophyll fluoreszenz und Kohlensäureassimilation. Biochemistry 315:139–232

    CAS  Google Scholar 

  6. Kautsky H, Appel W, Amann H (1960) Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochemistry 332:277–292

    CAS  Google Scholar 

  7. Sabater S, Admiraal W (2005) Periphyton as Biological Indicators in Managed Aquatic Ecosystems. Periphyton: Ecology, Exploitation and Management. Cambridge, Massachusetts: Azim ME, Verdegem MCJ, AA van Dam, MCM Beveridge (eds.), pp. 159–177

    Google Scholar 

  8. Clements WH, Newman MC (2002) Community ecotoxicology. Wiley, West Sussex, p 336

    Book  Google Scholar 

  9. Guasch H, Serra A, Corcoll N, Bonet B, Leira M (2010) Metal ecotoxicology in fluvial biofilms: potential influence of water scarcity. In: Sabater S, Barceló D (eds) Water scarcity in the Mediterranean. Perspecives under global change. Springer, Berlin, pp 41–54

    Chapter  Google Scholar 

  10. Freeman C, Lock MA (1995) The biofilm polysaccharide matrix—a buffer against changing organic substrate supply. Limnol Oceanogr 40:273–278

    Article  CAS  Google Scholar 

  11. Gray BR, Hill WR (1995) Nickel sorption by periphyton exposed to different light intensities. North Am Benthol Soc 14:29–305

    Google Scholar 

  12. Guasch H, Paulsson M, Sabater S (2002) Effect of copper on algal communities from oligotrophic calcareous streams. J Phycol 38:241–248

    Article  CAS  Google Scholar 

  13. Ivorra N, Barranguet C, Jonker M, Kraak MHS, Admiraal W (2002) Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ Pollut 16:147–157

    Article  Google Scholar 

  14. Pinto J, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  15. Guasch H, Admiraal W, Sabater S (2003) Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquat Toxicol 64:165–175

    Article  CAS  Google Scholar 

  16. Leboulanger C, Rimet F, Hème de Lacotte M, Bérard A (2001) Effects of atrazine and nicosulfuron on freshwater microalgae. Environ Int 26:131–135

    Article  CAS  Google Scholar 

  17. Pesce S, Fajon C, Bardot C, Bonnemoy F, Portelli C, Bohatier J (2006) Effect of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquat Toxicol 78:303–314

    Article  CAS  Google Scholar 

  18. Schmitt-Jansen M, Altenburger R (2005) Toxic effects of isoproturon on periphyton communities—a microcosm study. Estuar Coast Shelf Sci 62:539–545

    Article  CAS  Google Scholar 

  19. Schmitt-Jansen M, Altenburger R (2005) Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions. Environ Toxicol Chem 24:304–312

    Article  CAS  Google Scholar 

  20. Bonnineau C, Guasch H, Proia L, Ricart M, Geiszinger A, Romaní A, Sabater S (2010) Fluvial biofilms: a pertinent tool to assess β-blockers toxicity. Aquat Toxicol 96:225–233

    Article  CAS  Google Scholar 

  21. Franz S, Altenburger R, Heilmeier H, Schmitt-Jansen M (2008) What contributes to the sensitivity of microalgae to triclosan? Aquat Toxicol 90:102–108

    Article  CAS  Google Scholar 

  22. Lawrence JR, Swerhone GDW, Wassenaar LI, Neu TR (2005) Effects of selected pharmaceuticals on riverine biofilm communities. Can J Microbiol 51:655–669

    Article  CAS  Google Scholar 

  23. Ricart M, Guasch H, Alberch M, Barceló D, Bonnineau C, Farré M, Ferrer J, Geiszinger A, Morin S, Proia L, Ricciardi F, Romaní AM, Sala L, Sureda D, Sabater S (2010) Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat Toxicol 100:346–353

    Article  CAS  Google Scholar 

  24. Sabater S, Guasch H, Ricart M, Romaní A, Vidal G, Klünder C, Schmitt-Jansen M (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425–1434

    Article  CAS  Google Scholar 

  25. Barranguet C, Charantoni E, Pland M, Admiraal W (2000) Short-term response of monospecific and natural algal biofilms to copper exposure. Eur J Phycol 35:397–406

    Article  Google Scholar 

  26. Navarro E, Guasch H, Sabater S (2002) Use of microbenthic algal communities in ecotoxicological tests for the assessment of water quality: the Ter river case study. J Appl Phycol 14:41–48

    Article  Google Scholar 

  27. Guasch H, Navarro E, Serra A, Sabater S (2004) Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshw Biol 49:463–473

    Article  CAS  Google Scholar 

  28. Serra A, Corcoll N, Guasch H (2009) Copper accumulation and toxicity in fluvial periphyton. Chemosphere 5:633–641

    Article  Google Scholar 

  29. Ricart M, Guasch H, Barceló D, Geiszinger A, López De Alda M, Romaní AM, Vidal G, Villagrasa M, Sabater S (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76:1392–1401

    Article  CAS  Google Scholar 

  30. Ricart M, Guasch H, Barceló D, Brix R, Conceição MH, Geiszinger A, López De Alda MJ, López-Doval JC, Muñoz I, Romaní AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. J Hydrol 383:52–61

    Article  CAS  Google Scholar 

  31. Corcoll N, Bonet B, Leira M, Guasch H (2011) Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial periphyton: an experimental study. Hydrobiologia 673:119–136

    Article  CAS  Google Scholar 

  32. Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155

    Article  CAS  Google Scholar 

  33. Schmitt-Jansen M, Altenburger R (2007) The use of pulse-amplitude modulated (PAM) fluorescence-based methods to evaluate effects of herbicides in microalgal systems of different complexity. Toxicol Environ Chem 89:665–681

    Article  CAS  Google Scholar 

  34. McClellan K, Altenburger R, Schmitt-Jansen M (2008) Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. J Appl Ecol 45:1514–1522

    Article  CAS  Google Scholar 

  35. Schreiber U, Quayle P, Schmidt S, Escher I, Mueller JF (2007) Methodology and evaluation of a highly sensitive algae toxicity test based on multiwall chlorophyll fluorescence imaging. Biosens Bioelectron 22:2554–2563

    Article  CAS  Google Scholar 

  36. Schreiber U, Müller JF, Haugg A, Gademann R (2002) New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth Res 74:317–330

    Article  CAS  Google Scholar 

  37. Coquery M, Morin A, Bécue A, Lepot B (2005) Priority substances of the European Water Framework Directive: analytical challenges in monitoring water quality. Trac-Trends Anal Chem 24:2

    Article  Google Scholar 

  38. Farré M, Petrovica M, Gros M, Kosjekc T, Martinez H, Osvald P, Loos R, Le Menach K, Budzinski H, De Alencastrog F, Müller J, Knepper T, Finki G, Ternes TA, Zuccato E, Kormali P, Gans O, Rodil R, Quintana JB, Pastori F, Gentili A, Barceló D (2008) First interlaboratory exercise on non-steroidal anti-inflammatory drugs analysis in environmental samples. Talanta 76:580–590

    Article  Google Scholar 

  39. Furse MT, Hering D, Brabec K, Buffagui A, Sandin L, Verdouschot PFM (eds) (2006) The Ecological status of European Rivers: evaluating and intercalibration of assessment methods. Hydrobiologia 566: 3–29

    Google Scholar 

  40. Samson G, Morisette JC, Popovic R (1988) Copper quenching of the variable fluorescence in Dunaliella tertiolecta. New evidence for a copper inhibition effect on PSII photoinhibitory. Photochem Photobiol 48:329–332

    Article  CAS  Google Scholar 

  41. Singh DP, Khare P, Bisen PS (1989) Effects of Ni2+, Hg2+ and Cu2+ on growth, oxygen evolution and photosynthetic electron transport in Cylindrospermum IU 942. Plant Physiol 134:406–412

    Article  CAS  Google Scholar 

  42. Ralph PJ, Smith RA, Macinnis-Ng CMO, Seery CR (2007) Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems: review. Toxicol Environ Chem 89:589–607

    Article  CAS  Google Scholar 

  43. Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol V. Kluwer, Dordrecht, pp 4253–4258

    Google Scholar 

  44. Govindjee R (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  45. Melis A, Homann PH (1975) Kinetic analysis of the fluorescence in 3-(3,4-dichlorophyenyl)-1,1 dimethylurea poisoned chloroplasts. Photochem Photobiol 21:431–437

    Article  CAS  Google Scholar 

  46. Melis A, Schreiber U (1979) The kinetic relationship between the absorbance change, the reduction of Q (ΔA320) and the variable fluorescence yield change in chloroplasts at room temperature. Acta Biochim Biophys 547:47–57

    Article  CAS  Google Scholar 

  47. Lu CM, Chau CW, Zhang JH (2000) Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis—assessment by chlorophyll fluorescence analysis. Chemosphere 41:191–196

    Article  CAS  Google Scholar 

  48. Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27:41–55

    Article  CAS  Google Scholar 

  49. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  50. Srivastava A, Greppin H, Strasser R (1995) The steady state chlorophyll a fluorescence exhibits in vivo an optimum as function of light intensity which reflects the physiological state of the plant. Plant Cell Physiol 36:839–848

    CAS  Google Scholar 

  51. Rysgaard S, Kuhl M, Glud RN, Hansen JW (2001) Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland). Mar Ecol Prog Ser 223:15–26

    Article  Google Scholar 

  52. Serôdio J, Silva JM, Catarino F (1997) Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553

    Article  Google Scholar 

  53. Schmitt-Jansen M, Altenburger R (2008) Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. Aquat Toxicol 86:49–58

    Article  CAS  Google Scholar 

  54. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Acta Biochim Biophys 99:87–92

    Article  Google Scholar 

  55. García-Meza C, Barranguet C, Admiraal W (2005) Biofilm formation by algae as a mechanism for surviving on mine tailing. Environ Toxicol Chem 3:575–581

    Google Scholar 

  56. Barranguet C, Van den Ende FP, Rutgers M, Breure AM, Greijdanus M, Sinke JJ, Admiraal W (2003) Copper-induced modifications of the trophic relations in riverine algal-bacterial biofilms. Environ Toxicol Chem 22:1340–1349

    CAS  Google Scholar 

  57. Horton P, Ruban AV, Young AJ (1999) Regulation of the structure and function of the light harvesting complexes of photosytem II by the xanthophyll cycle. In: Frank HA, Young AJ, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer, Dordrecht, pp 271–291

    Google Scholar 

  58. Buschmann C (1995) Variation of the quenching of chlorophyll fluorescence under different intensities of the actinic light in wild-type plants of tabacco and in a Aurea mutant deficient of light-harvesting-complex. Plant Physiol 145:245–252

    Article  CAS  Google Scholar 

  59. Pospísil P (1997) Mechanisms of non-photochemical chlorophyll fluorescence quenching in higher plants. Photosynthetica 34:343–355

    Article  Google Scholar 

  60. Juneau P, Green BR, Harrison PJ (2005) Simulation of Pulse-Amplitude-Modulated (PAM) fluorescence: limitations of some PAM-parameters in studying environmental stress effects. Photosynthetica 43:75–83

    Article  CAS  Google Scholar 

  61. Mallick N, Mohn FH (2003) Use of chlorophyll fluorescence in metalstress research: a case study with the green microalga Scenedesmus. Ecotoxicol Environ Saf 55:64–69

    Article  CAS  Google Scholar 

  62. Kolbowski J, Schreiber U (1995) Computer-controlled phytoplankton analyzer based on a 4-wavelengths PAM chlorophyll fluorometer. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 5. Kluwer, Dordrecht, pp 825–828

    Google Scholar 

  63. Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen UP, Dau H (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53

    Article  CAS  Google Scholar 

  64. Conrad R, Buchel C, Wilhelm C, Arsalane W, Berkaloff C, Duval JC (1993) Changes in yield in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. J Appl Phycol 5:505–516

    Article  CAS  Google Scholar 

  65. Dorigo U, Leboulanger C (2001) A PAM fluorescence-based method for assessing the effects of photosystem II herbicides on freshwater periphyton. J Appl Phycol 13:509–515

    Article  CAS  Google Scholar 

  66. Trapmann S, Etxebarria N, Schnabl H, Grobecker K (1998) Progress in herbicide determination with the thylakoid bioassay. Environ Sci Pollut Res Int 5:17–20

    Article  CAS  Google Scholar 

  67. Dewez D, Marchand M, Eullaffroy P, Popovic R (2002) Evaluation of the effects of diuron and its derivatives on Lemna gibba using a fluorescence toxicity index. Environ Toxicol 17:493–501

    Article  CAS  Google Scholar 

  68. Dewez D, Geoffroy L, Vernet G, Popovic R (2005) Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Aquat Toxicol 74:150–159

    Article  CAS  Google Scholar 

  69. Laviale M, Prygiel J, Créach A (2010) Light modulated toxicity of isoproturon toward natural stream periphyton photosynthesis: a comparison between constant and dynamic light conditions. Aquat Toxicol 97:334–342

    Article  CAS  Google Scholar 

  70. Tlili A, Bérard A, Roulier JL, Volat B, Montuelle B (2010) PO 3−4 dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat Toxicol 98:165–177

    Article  CAS  Google Scholar 

  71. López-Doval JC, Ricart M, Guasch H, Romaní AM, Sabater S, Muñoz I (2010) Does grazing pressure modify diuron toxicity in a biofilm community? Arch Environ Contam Toxicol 58:955–962

    Article  Google Scholar 

  72. Blanck H, Wänkberg SÅ, Molander S (1988) Pollution-induced community tolerance—a new ecotoxicological tool. In: Cairs J Jr, Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals, 988. ASTM STP, Philadelphia, PA, pp 219–230

    Chapter  Google Scholar 

  73. Teisseire H, Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Leman minor). Plant Sci 153:65–72

    Article  CAS  Google Scholar 

  74. Nalewajko C, Olaveson MM (1994) Differential responses of growth, photosynthesis, respiration, and phosphate uptake to copper in copper-tolerant and copper-intolerant strains of Scenedesmus acutus (Chlorophyceae). Can J Bot 73:1295–1303

    Article  Google Scholar 

  75. Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhoff HC, Jorgensen SE (1998) Occurrence, fate, and effects of pharmaceutical substances in the environment—A review. Chemosphere 36:357–393

    Article  Google Scholar 

  76. Marwood CA, Solomon KR, Greenberg BM (2001) Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 20:890–898

    Article  CAS  Google Scholar 

  77. Metcalfe CD, Koenig BG, Bennie DT, Servos M, Ternes TA (2003) Occurrence of neutral and acidic drugs in the effluents of Canadian seawater treatment plants. Environ Toxicol Chem 22:2872–2880

    Article  CAS  Google Scholar 

  78. Morin S, Pesce S, Tlili A, Coste A, Montuelle B (2010) Recovery potential of periphytic communities in ariver impacted by a vineyard watershed. Ecol Indic 10:419–426

    Article  CAS  Google Scholar 

  79. Pesce S, Lissalde S, Lavieille D, Margoum C, Mazzella N, Roubeix V, Montuelle B (2010) Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach. Aquat Toxicol 99:492–499

    Article  CAS  Google Scholar 

  80. Pesce S, Margoum C, Montuelle B (2010) In situ relationship between spatio-temporal variations in diuron concentrations and phtotrophic biofilm tolerance in a contaminated river. Water Res 44:1941–1949

    Article  CAS  Google Scholar 

  81. Rotter S, Sans-Piché F, Streck G, Altenburger R, Schmitt-Jansen M (2011) Active bio-monitoring of contamination in aquatic systems—an in situ translocation experiment applying the PICT concept. Aquat Toxicol 101:228–236

    Article  CAS  Google Scholar 

  82. Dorigo U, Bourrain X, Bérard A, Leboulanger C (2004) Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Sci Total Environ 318:101–114

    Article  CAS  Google Scholar 

  83. Bonnineau C, Bonet B, Corcoll N, Guasch H (2011) Catalase in fluvial biofilms: a comparison between different extraction methods and example of application in a metal-polluted river. Ecotoxicology 20(1):293–303

    Article  CAS  Google Scholar 

  84. Guasch H, Bonet B, Bonnineau C, Corcoll N, López-Doval JC, Muñoz I, Ricart M, Serra A, Clements W (2012) How to link field observations with causality? Field and experimental approaches linking chemical pollution with ecological alterations. In: Guasch H, Ginebreda A, Geiszinger A (eds) Emerging and priority pollutants in rivers, vol 19, The handbook of environmental chemistry. Springer, Heidelberg

    Chapter  Google Scholar 

  85. Muñoz I, Sabater S, Barata C (2012) Evaluating ecological integrity in multi-stressed rivers: from the currently used biotic indices to newly developed approaches using biofilms and invertebrates. In: Guasch H, Ginebreda A, Geiszinger A (eds) Emerging and priority pollutants in rivers, vol 19, The handbook of environmental chemistry. Springer, Heidelberg

    Chapter  Google Scholar 

  86. Hiraki M, van Rensen JJ, Vredenberg WJ, Wakabayashi K (2003) Characterization of the alterations of the chlorophyll a fluorescence induction curve after addition of Photosystem II inhibiting herbicides font. Photosynth Res 78:35–46

    Article  CAS  Google Scholar 

  87. Guasch H, Muñoz I, Rosés N, Sabater S (1997) Changes in atrazine toxicity throughout succession of stream periphyton communities. J Appl Phycol 9:137–146

    Article  CAS  Google Scholar 

  88. Johnson RK, Hering D, Furse MT, Verdouschot PFM (2006) Indicators of ecological change: comparison of the early response of four organism groups to stress gradients. Hydrobiologia 566:139–152

    Article  CAS  Google Scholar 

  89. Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee R (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, The Netherlands, pp 279–319

    Chapter  Google Scholar 

  90. Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  Google Scholar 

  91. Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  92. Bolhàr-Nordenkampt HR, Öquist G (1993) Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall DO, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman & Hall, London, pp 193–206

    Chapter  Google Scholar 

  93. Kriedemann PF, Graham RD, Wiskich JT (1985) Photosynthetic dysfunction and in vivo chlorophyll a fluorescence from manganese-deficient wheat leaves. Aust J Agric Res 36:157–169

    Article  CAS  Google Scholar 

  94. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:655–684

    Article  CAS  Google Scholar 

  95. Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In Grab, G. [Ed] Photosynthesis: Mechanisms and Effects. Vol V. Kluwer Academic Publishers, Dordrecht, pp 4258–8

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the authors of publications [20, 23, 29] to give us the permission to use some of their figures to illustrate PAM applications on biofilms. Also we thank Ulrich Schreiber to give us the permission to use a figure of his publication [89] to illustrate the typical chl-a fluorescence kinetics. This study was financed by the European project KEYBIOEFFECTS (MRTN-CT-2006-035695) and the Spanish project FLUVIALMULTISTRESS (CTM2009-14111-CO2-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natàlia Corcoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Corcoll, N., Ricart, M., Franz, S., Sans-Piché, F., Schmitt-Jansen, M., Guasch, H. (2012). The Use of Photosynthetic Fluorescence Parameters from Autotrophic Biofilms for Monitoring the Effect of Chemicals in River Ecosystems. In: Guasch, H., Ginebreda, A., Geiszinger, A. (eds) Emerging and Priority Pollutants in Rivers. The Handbook of Environmental Chemistry(), vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25722-3_4

Download citation

Publish with us

Policies and ethics