Skip to main content

Fast Nyström Methods for Parabolic Boundary Integral Equations

  • Chapter
  • First Online:
Fast Boundary Element Methods in Engineering and Industrial Applications

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 63))

Abstract

Time dependence in parabolic boundary integral operators appears in form of an integral over the previous time evolution of the problem. The kernels are singular only at the current time and get increasingly smooth for contributions that are further back in time. The thermal layer potentials can be regarded as generalized Abel operators where the kernel is a parameter dependent surface integral operator. This special form implies that discretization methods and fast evaluation methods must be significantly changed from the familiar elliptic case. After a brief review of recent developments in the area we discuss the different options to discretize Abel integral operators in time. These methods are combined with standard surface quadrature rules to obtain a Nyström method for parabolic integral equations. The method is explicit and we will show how a version of the fast multipole method in space and time can be used to evaluate the time stepping scheme efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, D., Noon, P.: Coercivity of the single layer heat potential. J. Comput. Math. 7, 100–104 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press (1997)

    Google Scholar 

  3. Bourgeois, C., Schneider, R.: Biorthogonal wavelets for the direct integral formulation of the heat equation. Tech. Rep. SFB393/00-14, Technical University Chemnitz (2000)

    Google Scholar 

  4. Brattkus, K., Meiron, D.: Numerical simulations of unsteady crystal growth. SIAM J. Appl. Math. 52, 1303–1320 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge (2004)

    Google Scholar 

  6. Chien, D.: Numerical evaluation of surface integrals in three dimensions. Math. Comp. 64, 727–743 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costabel, M.: Boundary integral operators for the heat equation. Integral. Eq. Oper. Theory 13(4), 498–552 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costabel, M.: Time-dependent problems with the boundary integral equation method. In: Stein, E., de Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mathematics. Wiley (2004)

    Google Scholar 

  9. Costabel, M., Saranen, J.: The spline collocation method for parabolic boundary integral equations on smooth curves. Numer. Math. 93(3), 549–562 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numerica 6, 55–228 (1997)

    Article  MathSciNet  Google Scholar 

  11. Dargush, G., Banerjee, P.: Application of the boundary element method to transient heat conduction. Internat. J. Numer. Methods Engrg. 31, 1231–1247 (1991)

    Article  MATH  Google Scholar 

  12. Eggermont, P.: A new analysis of the trapezoidal - discretization method for the numerical solution of Abel-type integral equations. J. Integral Equations 3, 317–332 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Giebermann, K.: Multilevel approximation of boundary integral operators. Computing 67, 183–207 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Greengard, L., Lin, P.: Spectral approximation of the free-space heat kernel. Appl. Comput. Harmonic Anal. 9, 83–97 (1999)

    Article  MathSciNet  Google Scholar 

  15. Greengard, L., Strain, J.: A fast algorithm for the evaluation of heat potentials. Comm. Pure Appl. Math. XLIII, 949–963 (1990)

    Article  MathSciNet  Google Scholar 

  16. Greengard, L., Strain, J.: The fast Gauss transform. SIAM J. Sci. Comput. 12, 79–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Greengard, L., Sun, X.: A new version of the fast Gauss transform. Doc Math J DMV Extra Volume ICM 1998 III, 575–584 (1998)

    MathSciNet  Google Scholar 

  18. Grigoriev, M., Dargush, G.: Higher-order boundary element methods for transient diffusion problems. part I: Bounded flux formulation. Internat. J. Numer. Methods Engrg. 55, 1–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hackbusch, W.: Integral Equations: Theory and Numerical Treatment. Birkhäuser, Basel (1994)

    Google Scholar 

  20. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra integral equations. SIAM J. Sci. Comput. 6(3), 532–541 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hamina, M., Saranen, J.: On the spline collocation method for the single-layer heat operator equation. Math. Comp. 62, 41–64 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hsiao, G., Saranen, J.: Boundary integral solution of the two-dimensional heat equation. Math. Methods Appl. Sci. 16(2), 87–114 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kress, R.: Linear Integral Equations, Applied Mathematical Sciences, vol. 82. Springer, Heidelberg (1989)

    Book  Google Scholar 

  24. Li, J., Greengard, L.: High order accurate methods for the evaluation of layer heat potentials. SIAM J. Sci. Comput. 31(5), 3847–3860 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Linz, P.: Analytical and Numerical Methods for Volterra Equations. Studies in Applied Mathematics. SIAM (1985)

    Google Scholar 

  26. Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the first kind. IMA J. Numer. Anal. 7, 97–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lubich, C., Schneider, R.: Time discretization of parabolic boundary integral equations. Numer. Math. 63(1), 455–481 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. McIntyre, E.: Boundary integral solutions of the heat equation. Math. Comp. 46(173), 71–79 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Melenk, J., Boerm, S., Loehndorf, M.: Approximation of integral operators by variable-order interpolation. Numer. Math. 99(4), 605–643 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. von Petersdorff, T., Schwab, C.: Numerical solution of parabolic equations in high dimensions. Math. Model Numer. Anal. 38(1), 93–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pogorzelski, W.: Integral equations and their applications. Pergamon (1966)

    Google Scholar 

  32. Rathsfeld, A.: Nyström’s method and iterative solvers for the solution of the double-layer potential equation over polyhedral boundaries. SIAM J. Numer. Anal. 32(3), 924–951 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rizzo, F., Shippy, D.: A method of solution for certain problems of transient heat conduction. AIAA J. 8, 2004 (1971)

    Article  Google Scholar 

  34. Schanz, M., Antes, H.: Application of operational quadrature methods in time domain boundary element methods. Meccanica 32(3), 179–186 (1997)

    Article  MATH  Google Scholar 

  35. Strain, J.: Fast adaptive methods for the free-space heat equation. SIAM J. Sci. Comput. 15(1), 185–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, X., Bao, Y.: A Kronecker product representation of the fast Gauss transform. SIAM J. Matrix Anal. Appl. 24(3), 768–786 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tao, L., Yong, H.: A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equation of the second kind. J. Math. Anal. Appl. 282, 56–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tausch, J.: A fast method for solving the heat equation by layer potentials. J. Comput. Phys. 224, 956–969 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tausch, J.: Nystrom discretization of parabolic boundary integral equations. Appl. Numer. Math. 59(11), 2843–2856 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tausch, J.: The generalized Euler-Maclaurin formula for the numerical solution of Abel-type integral equations. J. Integral. Eqns. Appl. 22(1), 115–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tausch, J., Weckiewicz, A.: Multidimensional fast Gauss transforms by Chebyshev expansions. SIAM J. Sci. Comput. 31(5), 3547–3565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yarvin, N., Rokhlin, V.: An improved fast multipole algorithm for potential fields on the line. SIAM J. Numer. Anal. 36(2), 629–666 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Tausch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tausch, J. (2012). Fast Nyström Methods for Parabolic Boundary Integral Equations. In: Langer, U., Schanz, M., Steinbach, O., Wendland, W. (eds) Fast Boundary Element Methods in Engineering and Industrial Applications. Lecture Notes in Applied and Computational Mechanics, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25670-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25670-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25669-1

  • Online ISBN: 978-3-642-25670-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics