Skip to main content

Brain Inspired Cognitive System for Learning and Memory

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7062))

Included in the following conference series:

Abstract

Hippocampus, a major component of brain, plays an important role in learning and memory. In this paper, we present our brain-inspired cognitive model which combines a hippocampal circuitry together with hierarchical vision architecture. The structure of the simulated hippocampus is designed based on an approximate mammalian neuroanatomy. The connectivity between neural areas is based on known anatomical measurements. The proposed model could be used to explore the memory property and its corresponding neuron activities in hippocampus. In our simulation test, the model shows the ability of recalling character images that it had been learned before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arel, I., Rose, D.C., Karnowski, T.P.: Deep Machine Learning–A New Frontier in Artificial Intelligence Research. IEEE Computational Intelligence Magazine 5(4), 13–18 (2010)

    Article  Google Scholar 

  2. Coyle, D.: Neural Network Based Auto Association and Time Series Prediction for Biosignal Processing in Brain Computer Interfaces. IEEE Computational Intelligence Magazine 4(4), 47–59 (2009)

    Article  Google Scholar 

  3. Tang, H., Li, H., Yan, R.: Memory Dynamics in Attractor Networks with Saliency Weight. Neural Computation 22, 1899–1926 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frank, L.M., Brown, E.N., Wilson, M.: Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27, 169–178 (2000)

    Article  Google Scholar 

  5. Lavenex, P., Amaral, D.G.: Hippocampal neocortical interaction: a hierarchy of associativity. Hippocampus 10, 420–430 (2000)

    Article  Google Scholar 

  6. Amaral, D.G., Ishizuka, N., Claiborne, B.: Neurons, numbers and the hippocampal network. In: Progress in Brain Research, pp. 1–11. Elsevier Science, Amsterdam (1990)

    Google Scholar 

  7. Bernard, C., Wheal, H.V.: Model of local connectivity patterns in CA3 and CA1 areas of the hippocampus. Hippocampus 4, 497–529 (1994)

    Article  Google Scholar 

  8. Treves, A., Rolls, E.T.: Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994)

    Article  Google Scholar 

  9. Fleischer, J.G., Krichmar, J.L.: Sensory Intergation and Remapping in a Model of the Medial Temporal Lobe during Maze Navigation by a Brain-based Device. Journal of Integrative Neuroscience 6(3), 403–431 (2007)

    Article  Google Scholar 

  10. Barrera, A., Weitzenfeld, A.: Biological Inspired Neural Controller for Robot Learning and Mapping. In: Proc. IEEE Int. Joint Conf. on Neural Networks, pp. 3664–3671. IEEE Press, New York (2006)

    Google Scholar 

  11. Wyeth, B.G., Milford, M.: Spatial Cognition for Robots. IEEE Robotics & Automation Magazine 16(3), 24–32 (2009)

    Article  Google Scholar 

  12. Kandel, E.R., Schwartz, J.H., Jessel, T.M.: Principles of Neural Science. MIT Press, Cambridge (2000)

    Google Scholar 

  13. Riesenhuber, M., Poggio, T.: Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  14. Murray, J.F., Kreutz-Delgado, K.: Visual Recognition and Inference Using Dynamic Overcomplete Sparse Learning. Neural Computation 19, 2301–2352 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krichmar, J.L., Seth, A.K., Nitz, D.A., Fleischer, J.G., Edelman, G.M.: Spatial Navigation and Causal Analysis in a Brain-Based Device Modeling Cortical-Hippocampal Interactions. Neuroinformatics 3(3), 197–221 (2005)

    Article  Google Scholar 

  16. Ungerleider, L.G., Haxby, J.V.: “What” and “Where” in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994)

    Article  Google Scholar 

  17. Skaggs, W.E., McNaughton, B.L., Wilson, M.A., Barnes, C.A.: Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6(2), 149–156 (1996)

    Article  Google Scholar 

  18. Jedlicka, P.: Synaptic plasticity, metaplasticity and BCM theory. Bratisl Lek Listy 103, 137–143 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, H., Huang, W. (2011). Brain Inspired Cognitive System for Learning and Memory. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24955-6_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24954-9

  • Online ISBN: 978-3-642-24955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics