Skip to main content

Prototype-Based Classification of Dissimilarity Data

  • Conference paper
Advances in Intelligent Data Analysis X (IDA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7014))

Included in the following conference series:

Abstract

Unlike many black-box algorithms in machine learning, prototype-based models offer an intuitive interface to given data sets, since prototypes can directly be inspected by experts in the field. Most techniques rely on Euclidean vectors such that their suitability for complex scenarios is limited. Recently, several unsupervised approaches have successfully been extended to general, possibly non-Euclidean data characterized by pairwise dissimilarities. In this paper, we shortly review a general approach to extend unsupervised prototype-based techniques to dissimilarities, and we transfer this approach to supervised prototype-based classification for general dissimilarity data. In particular, a new supervised prototype-based classification technique for dissimilarity data is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alex, N., Hasenfuss, A., Hammer, B.: Patch clustering for massive data sets. Neurocomputing 72(7-9), 1455–1469 (2009)

    Article  Google Scholar 

  2. Bishop, C., Svensen, M., Williams, C.: The generative topographic mapping. Neural Computation 10(1), 215–234 (1998)

    Article  MATH  Google Scholar 

  3. Cilibrasi, R., Vitanyi, M.B.: Clustering by compression. IEEE Transactions on Information Theory 51(4), 1523–1545 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762–771 (2006)

    Article  MATH  Google Scholar 

  5. Denecke, A., Wersing, H., Steil, J.J., Koerner, E.: Online Figure-Ground Segmentation with Adaptive Metrics in Generalized LVQ. Neurocomputing 72(7-9), 1470–1482 (2009)

    Article  Google Scholar 

  6. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gisbrecht, A., Hammer, B., Schleif, F.-M., Zhu, X.: Accelerating dissimilarity clustering for biomedical data analysis. In: Proceedings of SSCI (2011)

    Google Scholar 

  8. Gisbrecht, A., Mokbel, B., Hammer, B.: Relational generative topographic mapping. Neurocomputing 74(9), 1359–1371 (2011)

    Article  Google Scholar 

  9. Hammer, B., Hasenfuss, A.: Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22(9), 2229–2284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  Google Scholar 

  11. Hasenfuss, A., Hammer, B.: Relational Topographic Maps. In: Berthold, M.R., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 93–105. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Hasenfuss, A., Boerger, W., Hammer, B.: Topographic processing of very large text datasets. In: Daglie, C.H., et al. (eds.) Smart Systems Engineering: Computational Intelligence in Architecting Systes (ANNIE 2008), pp. 525–532. ASME Press (2008)

    Google Scholar 

  13. Kietzmann, T., Lange, S., Riedmiller, M.: Incremental GRLVQ: Learning Relevant Features for 3D Object Recognition. Neurocomputing 71(13-15), 2868–2879 (2008)

    Article  Google Scholar 

  14. Kohonen, T. (ed.): Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., New York (2001)

    MATH  Google Scholar 

  15. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15(8-9), 945–952 (2002)

    Article  Google Scholar 

  16. Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin g-banded human metaphase chromosomes. Clinical Genetics 18, 355–370 (1980)

    Article  Google Scholar 

  17. Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and reliable maldi-tof ms–based microorganism identification. Nature Methods (3) (2006)

    Google Scholar 

  18. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ’Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  19. Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7(3) (1994)

    Google Scholar 

  20. Mokbel, B., Hasenfuss, A., Hammer, B.: Graph-Based Representation of Symbolic Musical Data. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 42–51. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)

    Article  MATH  Google Scholar 

  22. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  23. Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm. In: Proc. of ICPR 2004, pp. 621–624 (2004)

    Google Scholar 

  24. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Mozer, M.C., Touretzky, D.S., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference. Advances in Neural Information Processing Systems, vol. 8, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  25. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21(12), 3532–3561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schneider, P., Biehl, M., Hammer, B.: Distance Learning in Discriminative Vector Quantization. Neural Computation 21(10), 2942–2969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589–1604 (2003)

    Article  MATH  Google Scholar 

  28. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Williams, C., Seeger, M.: Using the nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems, vol. 13, pp. 682–688. MIT Press, Cambridge (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hammer, B., Mokbel, B., Schleif, FM., Zhu, X. (2011). Prototype-Based Classification of Dissimilarity Data. In: Gama, J., Bradley, E., Hollmén, J. (eds) Advances in Intelligent Data Analysis X. IDA 2011. Lecture Notes in Computer Science, vol 7014. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24800-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24800-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24799-6

  • Online ISBN: 978-3-642-24800-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics