Skip to main content

Degradation of Phthalate Esters by Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 Isolated from Mangrove Sediments

  • Chapter
  • First Online:
Biology of Marine Fungi

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 53))

Abstract

Phthalate esters (PAEs) are important industrial compounds mainly used as plasticizers to increase flexibility and softness of plastic products. PAEs are of major concern because of their widespread use, ubiquity in the environment, and endocrine-disrupting toxicity. In this study, two fungal strains, Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 which had the capability to degrade dimethyl phthalate esters (DMPEs), were isolated from mangrove sediments in the Futian Nature Reserve of Shenzhen, China, by enrichment culture technique. These fungi were identified on the basis of spore morphology and molecular typing using 18S rDNA sequence. Comparative investigations on the biodegradation of three isomers of DMPEs, namely dimethyl phthalate (DMP), dimethyl isophthalate (DMI), and dimethyl terephthalate (DMT), were carried out with these two fungi. It was found that both fungi could not completely mineralize DMPEs but transform them to the respective monomethyl phthalate or phthalate acid. Biochemical degradation pathways for different DMPE isomers by both fungi were different. Both fungi could transform DMT to monomethyl terephthalate (MMT) and further to terephthalic acid (TA) by stepwise hydrolysis of two ester bonds. However, they could only carry out one-step ester hydrolysis to transform DMI to monomethyl isophthalate (MMI). Further metabolism of MMI did not proceed. Only Trichosporon sp. was able to transform DMP to monomethyl phthalate (MMP) but not Fusarium sp. The optimal pH for DMI and DMT degradation by Fusarium sp. was 6.0 and 4.5, respectively, whereas for Trichosporon sp., the optimal pH for the degradation of all the three DMPE isomers was at 6.0. These results suggest that the fungal esterases responsible for hydrolysis of the two ester bonds of PAEs are highly substrate specific.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn JY, Kim YH, Min J, Lee J (2006) Accelerated degradation of dipentyl phthalate by Fusarium oxysporum f. sp. pisi cutinase and toxicity evaluation of its degradation products using bioluminescent bacteria. Curr Microbiol 52:340–344

    Article  PubMed  CAS  Google Scholar 

  • Akita K, Naitou C, Maruyama K (2001) Purification and characterization of an esterase from Micrococcus sp. YGJ1 hydrolyzing phthalate esters. Biosci Biotechnol Biochem 65:1680–1683

    Article  PubMed  CAS  Google Scholar 

  • Baikova SV, Samsonova AS, Aleshchenkova ZM, Shcherbina AN (1999) The intensification of dimethylphthalate destruction in soil. Eurasian Soil Sci 32:701–704

    Google Scholar 

  • Bauer MJ, Herrmann R (1997) Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Sci Total Environ 208:49–57

    Article  PubMed  CAS  Google Scholar 

  • Begum A, Katsumata H, Kaneco S, Suzuki T, Ohta K (2003) Biodegradation of phthalic acid esters by bakery yeast Saccharomyces cerevisiae. Bull Environ Contam Toxicol 70:255–261

    Article  PubMed  CAS  Google Scholar 

  • Bordjiba O, Steiman R, Kadri M, Semadi A, Guiraud G (2001) Removal of herbicides from liquid media by fungi isolated from a contaminated soil. J Environ Qual 30:418–426

    Article  PubMed  CAS  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  PubMed  CAS  Google Scholar 

  • Cartwright CD, Owen SA, Thompson IP, Burns RG (2000) Biodegradation of diethyl phthalate in soil by a novel pathway. FEMS Microbiol Lett 186:27–34

    Article  PubMed  CAS  Google Scholar 

  • Chai W, Suzuki M, Handa Y, Murakami M, Utsukihara T, Honma Y, Nakajima K, Saito M, Horiuchi CA (2008) Biodegradation of di-(2ethylhexyl) phthalate by fungi. Rep Nat’l Food Res Inst 72:83–87

    Google Scholar 

  • Chang HK, Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537

    PubMed  CAS  Google Scholar 

  • Chang BV, Yang CM, Cheng CH, Yuan SY (2004) Biodegradation of phthalate esters by two bacteria strains. Chemosphere 55:533–538

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Dutta TK (2003) Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Comm 309:36–43

    Article  PubMed  CAS  Google Scholar 

  • Chulalaksananukul S, Gadd GM, Sangvanich P, Sihanonth P, Piapukiew J, Vangnai AS (2006) Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp. FEMS Microbiol Lett 262:99–106

    Article  PubMed  CAS  Google Scholar 

  • Colón I, Caro D, Bourdony CJ, Rosario O (2000) Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect 108:895–900

    Article  PubMed  Google Scholar 

  • David RM, Gans G (2003) Summary of mammalian toxicology and health effects of phthalate esters. In: Staples CA (ed) Phthalate Esters. The Handbook of Environmental Chemistry. Vol. 3, Part Q, 299–316, Springer-Verlag, Berlin, doi: 10.1007/b11470

    Google Scholar 

  • Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703

    Article  PubMed  CAS  Google Scholar 

  • Eaton RW, Ribbons DW (1982) Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol 151:48–57

    PubMed  CAS  Google Scholar 

  • Fang HHP, Liang D, Zhang T (2007) Aerobic degradation of diethyl phthalate by Sphingomonas sp. Bioresour Technol 98:717–720

    Article  PubMed  CAS  Google Scholar 

  • Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Ganji SH, Karigar CS, Pujar BG (1995) Metabolism of dimethylterephthalate by Aspergillus niger. Biodegradation 6:61–66

    Article  PubMed  CAS  Google Scholar 

  • Gartshore J, Cooper DG, Nicell JA (2003) Biodegradation of plasticizers by Rhodotorula rubra. Environ Toxicol Chem 22:1244–1251

    PubMed  CAS  Google Scholar 

  • Gu JD, Li J, Wang Y (2005) Biochemical pathway and degradation of phthalate ester isomers by bacteria. Water Sci Technol 52:241–248

    PubMed  CAS  Google Scholar 

  • Harris CA, Sumpter JP (2001) The endocrine disrupting potential of phthalates. In: Metzler M (ed) Endocrine Disruptors: Part 1. The Handbook of Environmental Chemistry. Vol. 3, Part L, 169-201, Springer-Verlag, Berlin, doi: 10.1007/10690734_9

    Google Scholar 

  • Hartmans S, Smits JP, van der Werf MJ, Volkering F, de Bont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855

    PubMed  CAS  Google Scholar 

  • Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  PubMed  CAS  Google Scholar 

  • Hwang SS, Choi HT, Song HG (2008) Biodegradation of endocrine-disrupting phthalates by Pleurotus ostreatus. J Microbiol Biotechnol 18:767–772

    PubMed  CAS  Google Scholar 

  • Iwaki H, Saji H, Nakai E, Hasegawa Y (2004) Degradation of cyclopentanol by Trichosporon cutaneum strain KUY-6A. Microbes Environ 19:241–243

    Article  Google Scholar 

  • Jobling S, Reynods T, White R, Parker MG, Sumpter JP (1995) A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 103:582–587

    Article  PubMed  CAS  Google Scholar 

  • Jonsson S, Ejlertsson J, Ledin A, Mersiowsky I, Svensson BH (2003) Mono- and diesters from o-phthalic acid in leachates from different European landfills. Water Res 37:609–617

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000) Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. J Phytopathol 148:263–275

    Article  CAS  Google Scholar 

  • Kaszycki P, Czechowska K, Petryszak P, Miedzobrodzki J, Pawlik B, Koloczek H (2006) Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochim Pol 53:463–473

    PubMed  CAS  Google Scholar 

  • Keyser P, Pujar BG, Eaton RW, Ribbons DW (1976) Biodegradation of the phthalates and their esters by bacteria. Environ Health Perspect 18:159–166

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Lee J (2005) Enzymatic degradation of dibutyl phthalate and toxicity of its degradation products. Biotechnol Lett 27:635–639

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Lee J, Ahn JY, Gu MB, Moon SH (2002) Enhanced degradation of an endocrine-disrupting chemical, butyl benzyl phthalate, by Fusarium oxysporum f. sp. pisi cutinase. Appl Environ Microbiol 68:4684–4688

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Lee J, Moon SH (2003) Degradation of an endocrine disrupting chemical, DEHP [di-(2-ethylhexyl)-phthalate], by Fusarium oxysporum f. sp. pisi cutinase. Appl Microbiol Biotechnol 63:75–80

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Min J, Bae KD, Gu MB, Lee J (2005) Biodegradation of dipropyl phthalate and toxicity of its degradation products: a comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase. Arch Microbiol 184:25–31

    Article  PubMed  CAS  Google Scholar 

  • Kurane R (1997) Microbial degradation and treatment of polycyclic aromatic hydrocarbons and plasticizers. Ann N Y Acad Sci 829:118–134

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Koo BW, Lee SS, Kim MK, Choi DH, Hong EJ, Jeung EB, Choi IG (2004) Biodegradation of dibutylphthalate by white rot fungi and evaluation on its estrogenic activity. Enzyme Microb Technol 35:417–423

    Article  CAS  Google Scholar 

  • Lee SM, Lee JW, Koo BW, Kim MK, Choi DH, Choi IG (2007) Dibutyl phthalate biodegradation by the white rot fungus, Polyporus brumalis. Biotechnol Bioeng 97:1516–1522

    Article  PubMed  CAS  Google Scholar 

  • Li J, Gu JD (2006) Biodegradation of dimethyl terephthalate by Pasteurella multocida Sa follows an alternative biochemical pathway. Ecotoxicology 15:391–397

    Article  PubMed  CAS  Google Scholar 

  • Li J, Gu JD (2007) Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr isolated from Wetland sediment. Sci Total Environ 380:181–187

    Article  PubMed  CAS  Google Scholar 

  • Li J, Gu JD, Pan L (2005a) Transformation of dimethyl phthalate, dimethyl isophthalate and dimethyl terephthalate by Rhodococcus rubber Sa and modeling the processes using the modified Gompertz model. Int Biodeterior Biodegrad 55:223–232

    Article  CAS  Google Scholar 

  • Li J, Gu JD, Yao JH (2005b) Degradation of dimethyl terephthalate by Pasteurella multocida Sa and Sphingomonas paucimobilis Sy isolated from mangrove sediment. Int Biodeterior Biodegrad 56:158–165

    Article  CAS  Google Scholar 

  • Li P, Li H, Stagnitti F, Wang X, Zhang H, Gong Z, Liu W, Xiong X, Li L, Austin C, Barry DA (2005c) Biodegradation of pyrene and phenanthrene in soil using immobilized fungi Fusarium sp. Bull Environ Contam Toxicol 75:443–450

    Article  PubMed  CAS  Google Scholar 

  • Li R, Chen GZ, Tam NFY, Luan TG, Shin PKS, Cheung SG, Liu Y (2009) Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotox Environ Safe 72:321–328

    Article  CAS  Google Scholar 

  • Long JLA, House WA, Parker A, Rae JE (1998) Micro-organic compounds associated with sediments in the Humber rivers. Sci Total Environ 210–211:229–253

    Google Scholar 

  • Luo ZH (2010) Degradation of three dimethyl phthalate isomer esters (DMPEs) by mangrove sediment fungi. PhD Thesis, City University of Hong Kong, Hong Kong

    Google Scholar 

  • Luo ZH, Pang KL, Gu JD, Chow RKK, Vrijmoed LLP (2009) Degradability of the three dimethyl phthalate isomer esters (DMPEs) by a Fusarium species isolated from mangrove sediment. Mar Pollut Bull 58:765–768

    Article  PubMed  CAS  Google Scholar 

  • Luo ZH, Wu YR, Pang KL, Gu JD, Vrijmoed LLP (2011) Comparison of initial hydrolysis of the three dimethyl phthalate esters (DMPEs) by a basidiomycetous yeast, Trichosporon DMI-5-1, from coastal sediment. Environ Sci Pollut Res. doi:doi:10.1007/s11356-011-0525-1

  • MacGillivray AR, Shiaris MP (1993) Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl Environ Microbiol 59:1613–1618

    PubMed  CAS  Google Scholar 

  • Maruyama K, Akita K, Naitou C, Yoshida M, Kitamura T (2005) Purification and characterization of an esterase hydrolyzing monoalkyl phthalates from Micrococcus sp. YGJ1. J Biochem 137:27–32

    Article  PubMed  CAS  Google Scholar 

  • Middelhoven WJ (1993) Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. A literature review and an experimental approach. Antonie Van Leeuwenhoek 63:125–144

    Article  PubMed  CAS  Google Scholar 

  • Middelhoven WJ, Koorevaar M, Schuur GW (1992) Degradation of benzene compounds by yeasts in acidic soils. Plant Soil 145:37–43

    Article  CAS  Google Scholar 

  • Middelhoven WJ, Scorzetti G, Fell JW (2004) Systematics of the anamorphic basidiomycetous yeasts genus Trichosporon Behrend with the description of five novel species: Trichosporon vadense, T. smithiae, T. dehoogii, T. scarabaeorum and T. gamsii. Int J Syst Evol Microbiol 54:975–986

    Article  PubMed  CAS  Google Scholar 

  • Nalli S, Cooper DG, Nicell JA (2005) Metabolites from the biodegradation of di-ester plasticizers by Rhodococcus rhodochrous. Sci Total Environ 366:286–294

    PubMed  Google Scholar 

  • Paxéus N (2000) Organic compounds in municipal landfill leachates. Water Sci Technol 42:323–333

    Google Scholar 

  • Peterson JC, Freeman DH (1982) Phthalate ester concentration variations in dated sediment cores from Chesapeake Bay. Environ Sci Technol 16:464–469

    Article  CAS  Google Scholar 

  • Philips MW, Gordon GLR (1989) Growth characteristics on cellobiose of three different anaerobic fungi isolated from the ovine rumen. Appl Environ Microbiol 55:1695–1702

    Google Scholar 

  • Pradeepkumar S, Karegoudar TB (2000) Metabolism of dimethylphthalate by Aspergillus niger. J Microbiol Biotechnol 10:518–521

    CAS  Google Scholar 

  • Sampaio JP (1999) Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications. Can J Microbiol 45:491–512

    Article  PubMed  CAS  Google Scholar 

  • Sietmann R, Hammer E, Schauer F (2002) Biotransformation of biarylic compounds by yeasts of the genus trichosporon. Syst Appl Microbiol 25:332–339

    Article  PubMed  CAS  Google Scholar 

  • Sivamurthy K, Swamy BM, Pujar BG (1991) Transformation of dimethylterephthalate by the fungus Sclerotium rolfsii. FEMS Microbiol Lett 79:37–40

    Article  CAS  Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997a) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749

    Article  CAS  Google Scholar 

  • Staples CA, Adams WJ, Parkerton TF, Gorsuch JW, Biddinger GR, Reinert KH (1997b) Aquatic toxicity of eighteen phthalate esters. Environ Toxicol Chem 16:875–891

    Article  CAS  Google Scholar 

  • Stingley RL, Brezna B, Khan AA, Cerniglia CE (2004) Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150:2749–2761

    Article  Google Scholar 

  • Tam NFY (2006) Pollution studies on mangroves in Hong Kong and Mainland China. In: Wolanski E (ed) The environment in Asia Pacific harbors. Springer, Dordrecht

    Google Scholar 

  • Tam NFY, Li SH, Lan CY, Chen GZ, Li MS, Wong YS (1995) Nutrients and heavy metal contamination of plants and sediments in Futian mangrove forest. Hydrobiologia 295:149–158

    Article  CAS  Google Scholar 

  • Tan GH (1995) Residue levels of phthalate esters in water and sediment samples from the Klang River basin. Bull Environ Contam Toxicol 54:171–176

    Article  PubMed  CAS  Google Scholar 

  • Tortella GR, Diez MC, Duran N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212

    Article  PubMed  CAS  Google Scholar 

  • Vega D, Bastide J (2003) Dimethylphthalate hydrolysis by specific microbial esterase. Chemosphere 51:663–668

    Article  PubMed  CAS  Google Scholar 

  • Verdin A, Sahraoui AL, Durand R (2004) Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeterior Biodegrad 53:65–70

    Article  CAS  Google Scholar 

  • Wang YP, Gu JD (2006a) Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology 15:549–557

    Article  PubMed  Google Scholar 

  • Wang YP, Gu JD (2006b) Degradation of dimethyl isophthalate by Viarovorax paradoxus strain T4 isolated from deep-ocean sediment of the South China Sea. Hum Ecol Risk Assess 12:236–247

    Article  Google Scholar 

  • Wang Y, Fan Y, Gu JD (2003) Aerobic degradation of phthalic acid by Comamonas acidovoran Fy-1 and dimethyl phthalate ester by two reconstituted consortia from sewage sludge at high concentrations. World J Microbiol Biotechnol 19:811–815

    Article  Google Scholar 

  • Wang J, Zhao X, Wu W (2004) Biodegradation of phthalic acid esters (PAEs) in soil bioaugmented with acclimated activated sludge. Process Biochem 39:1837–1841

    Article  CAS  Google Scholar 

  • Wang Y, Yin B, Hong Y, Yan Y, Gu JD (2008) Degradation of dimethyl carboxylic phthalate ester by Burkholderia cepacia DA2 isolated from marine sediment of South China Sea. Ecotoxicology 17:845–852

    Article  PubMed  CAS  Google Scholar 

  • Weber RWS, Ridderbusch DC, Anke H (2002) 2,4,6-Trinitrotoluene (TNT) tolerance and biotransformation potential of microfungi isolated from TNT-contaminated soil. Mycol Res 106:336–344

    Article  CAS  Google Scholar 

  • Williams SE, Woolridge EM, Ransom SC, Landro JA, Babbitt PC, Kozarich JW (1992) 3-Carboxy-cis, cis-muconate lactonizing enzyme from Pseudomonas putida is homologous to the class II fumarase family: a new reaction in the evolution of a mechanistic motif. Biochemistry 31:9768–9776

    Article  PubMed  CAS  Google Scholar 

  • Wu YR, Luo ZH, Chow RKK, Vrijmoed LLP (2010a) Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresour Technol 101:9772–9777

    Article  PubMed  CAS  Google Scholar 

  • Wu YR, Luo ZH, Vrijmoed LLP (2010b) Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresour Technol 101:9666–9672

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Ebinghaus R, Temme C, Caba A, Ruck W (2005) Atmospheric concentrations and air-sea exchanges of phthalates in the North Sea (German Bight). Atmos Environ 39:3209–3219

    Article  CAS  Google Scholar 

  • Xu XR, Gu JD, Li HB, Li XY (2005a) Kinetics of di-n-butyl phthalate degradation by a bacterium isolated from mangrove sediment. J Microbiol Biotechnol 15:946–951

    CAS  Google Scholar 

  • Xu XR, Li HB, Gu JD (2005b) Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1. Int Biodeterior Biodegrad 55:9–15

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Gu JD (2006) Elucidation of n-butyl benzyl phthalate biodegradation using high-performance liquid chromatography and gas chromatography-mass spectrometry. Anal Bioanal Chem 386:370–375

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Li F, Wang Q (2008) Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Sci Total Environ 393:333–340

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Cai L, Yuan D, Chen M (2004) Distribution and sources of polynuclear aromatic hydrocarbons in Mangrove surficial sediments of Deep Bay, China. Mar Pollut Bull 49:479–486

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was substantially supported by grants from City University of Hong Kong (Project No. 7002220 and 9610037), the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CA04/05. SC01), and National Natural Science Foundation of China (Project No. 41006099), which are gratefully acknowledged. The authors would also like to thank Ms Jessie Lai of The University of Hong Kong and Miss Alice Chan of City University of Hong Kong for technical support in HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. P. Vrijmoed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luo, ZH., Pang, KL., Wu, YR., Gu, JD., Chow, R.K.K., Vrijmoed, L.L.P. (2012). Degradation of Phthalate Esters by Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 Isolated from Mangrove Sediments. In: Raghukumar, C. (eds) Biology of Marine Fungi. Progress in Molecular and Subcellular Biology(), vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23342-5_15

Download citation

Publish with us

Policies and ethics