Skip to main content

Enhanced Topology-Sensitive Clustering by Reeb Graph Shattering

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization II

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Scalar-valued functions are ubiquitous in scientific research. Analysis and visualization of scalar functions defined on low-dimensional and simple domains is a well-understood problem, but complications arise when the domain is high-dimensional or topologically complex. Topological analysis and Morse theory provide tools that are effective in distilling useful information from such difficult scalar functions. A recently proposed topological method for understanding high-dimensional scalar functions approximates the Morse-Smale complex of a scalar function using a fast and efficient clustering technique. The resulting clusters (the so-called Morse crystals) are each approximately monotone and are amenable to geometric summarization and dimensionality reduction. However, some Morse crystals may contain loops. This shortcoming can affect the quality of the analysis performed on each crystal, as regions of the domain with potentially disparate geometry are assigned to the same cluster. We propose to use the Reeb graph of each Morse crystal to detect and resolve certain classes of problematic clustering. This provides a simple and efficient enhancement to the previous Morse crystals clustering. We provide preliminary experimental results to demonstrate that our improved topology-sensitive clustering algorithm yields a more accurate and reliable description of the topology of the underlying scalar function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Edelsbrunner, H., Harer, J., Wang, Y.: Extreme elevation on a 2-manifold. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, SCG 04, Brooklyn, New York, pp. 357–365. ACM, New York (2004)

    Google Scholar 

  2. Aurenhammer, F.: Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  3. Beucher, S.: Watersheds of functions and picture segmentation. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ’82, vol. 7, pp. 1928–1931 (1982)

    Google Scholar 

  4. Beucher, S., Lantuejoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation, Rennes, France (1979)

    Google Scholar 

  5. Bremer, P.T., Weber, G., Pascucci, V., Day, M., Bell, J.: Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. Visual. Comput. Graph. 16(2), 248–260 (2010)

    Article  Google Scholar 

  6. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. Theor. Appl. 24(3), 75–94 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geometric measures. In: IEEE Visualization ’04, pp. 497–504. IEEE Computer Society, MD (2004)

    Google Scholar 

  8. Chazal, F., Guibas, L., Oudot, S., Skraba, P.: Analysis of scalar fields over point cloud data. In: Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, New York, pp. 1021–1030. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Google Scholar 

  9. Chazal, F., Guibas, L., Oudot, S., Skraba, P.: Persistence-based clustering in riemannian manifolds. Tech. Rep. RR-6968, INRIA (2009)

    Google Scholar 

  10. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  11. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using poincaré and lefschetz duality. Found. Comput. Math. 9(1), 133–134 (2009)

    Article  MathSciNet  Google Scholar 

  12. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE TPAMI 24, 603–619 (2002)

    Article  Google Scholar 

  13. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30, 87–107 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, San Diego, CA, pp. 361–370. ACM, New York (2003)

    Google Scholar 

  16. Gerber, S., Bremer, P.T., Pascucci, V., Whitaker, R.: Visual exploration of high dimensional scalar functions. IEEE Trans. Visual. Comput. Graph. 16(6), 1271–1280 (2010)

    Article  Google Scholar 

  17. Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. IEEE Trans. Visual. Comput. Graph. 13(6), 1440–1447 (2007)

    Article  Google Scholar 

  18. Gyulassy, A., Duchaineau, M., Natarajan, V., Pascucci, V., Bringa, E., Higginbotham, A., Hamann, B.: Topologically clean distance fields. IEEE Trans. Visual. Comput. Graph. 13(6), 1432–1439 (2007)

    Article  Google Scholar 

  19. Hartley, R., Zisserman, A.: Multiple View Geometry, 2nd edn. Cambridge University Press, London (2003)

    Google Scholar 

  20. Harvey, W., Wang, Y.: Generating and exploring a collection of topological landscapes for visualization of scalar-valued functions. Comput. Graph. Forum 29(3), 9931002 (2010)

    Article  Google Scholar 

  21. Harvey, W., Wang, Y., Wenger, R.: A randomized O(m log m) time algorithm for computing Reeb graphs of arbitrary simplicial complexes. In: Proc. Annual Symp. on Computational Geometry 2010, SoCG ’10, pp. 267–276. ACM, New York, NY, USA (2010)

    Google Scholar 

  22. Jaromczyk, J.W., Abstract, G.T.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80(9), 1502–1517 (1992)

    Article  Google Scholar 

  23. Laney, D., Bremer, P.T., Mascarenhas, A., Miller, P., Pascucci, V.: Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Visual. Comput. Graph. 12(5), 1052–1060 (2006)

    Article  Google Scholar 

  24. Lindstrom, P., Duchaineau, M.: Factoring algebraic error for relative pose estimation. Tech. Rep. LLNL-TR-411194, Lawrence Livermore National Laboratory (2009)

    Google Scholar 

  25. Morse, M.: Relations between the critical points of a real functions of n independent variables. Trans. Am. Math. Soc. 27, 345–396 (1925)

    MATH  MathSciNet  Google Scholar 

  26. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Najman, L., Schmitta, M.: Watershed of a continuous function. Signal Process. Mathematical Morphology and its Applications to Signal Processing 38(1), 99–112 (1994)

    Google Scholar 

  28. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: Simplicity and speed. ACM Trans. Graph. 26(3), 58 (2007)

    Article  Google Scholar 

  29. Reeb, G.: Sur les points singuliers d’une forme de pfaff completement intergrable ou d’une fonction numerique [on the singular points of a complete integral pfaff form or of a numerical function]. Comptes Rendus Acad. Science Paris 222, 847–849 (1946)

    MATH  MathSciNet  Google Scholar 

  30. Sheikh, Y., Kahn, E., Kanade, T.: Mode-seeking by medoidshifts. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  31. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM 31, 245–281 (1984)

    Article  MATH  Google Scholar 

  32. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: ECCV (4), pp. 705–718 (2008)

    Google Scholar 

  33. Vietoris, L.: Ăœber den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 97(1), 454472 (1927)

    Article  MathSciNet  Google Scholar 

  34. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  35. Zhu, X., Sarkar, R., Gao, J.: Shape segmentation and applications in sensor networks. In: INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, pp. 1838–1846 (2007)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Peter G. Lindstrom for providing us with the optimization dataset and his help and insight into the problem. This work was funded by the National Science Foundation (NSF) under grants CCF-0747082, DBI-0750891, and CCF-1048983. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We would like to thank the Livermore Elks for their scholarship support. Publication number: LLNL-CONF-468782.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harvey, W., RĂ¼bel, O., Pascucci, V., Bremer, PT., Wang, Y. (2012). Enhanced Topology-Sensitive Clustering by Reeb Graph Shattering. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds) Topological Methods in Data Analysis and Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23175-9_6

Download citation

Publish with us

Policies and ethics