Skip to main content

Nanophotonic Device Application Using Semiconductor Nanorod Heterostructures

  • Chapter
  • First Online:
Semiconductor Nanostructures for Optoelectronic Devices

Part of the book series: NanoScience and Technology ((NANO))

  • 2202 Accesses

Abstract

“Quantitative innovation” in optical technology is required for future optical information-transmission systems, that is, increasing the integration of photonic devices by reducing their size and heat generation. Furthermore, novel applications such as optical information-processing systems are expected by realizing “qualitative innovation,” meaning novel functions and operations in photonic devices that are impossible with conventional photonic devices, such as lasers, modulators, and waveguides. This chapter reviews how the “nanophotonics” provides us “qualitative innovation.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ohtsu, K. Kobayashi (ed.) Optical Near Fields(Springer-Verlag, Berlin,2003)

    Google Scholar 

  2. M. Ohtsu (ed.) Prefaces to Volume Vin Progress in Nano-Electro-Optics V (Springer-Verlag, Berlin, 2006)

    Google Scholar 

  3. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Selected Topics in Quantum Electron. 8, 839 (2002)

    Article  Google Scholar 

  4. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 292, 1897 (2001)

    Article  ADS  Google Scholar 

  5. A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G.K.L. Wong, Y. Matsumoto, H. Koinuma, Appl. Phys. Lett. 77, 2204 (2000)

    Article  ADS  Google Scholar 

  6. H.D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, J. Appl. Phys. 91, 1993 (2002)

    Article  ADS  Google Scholar 

  7. D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, G. Cantwell, W.C. Harsch, Phys. Rev. B 60, 2340 (1999)

    Article  ADS  Google Scholar 

  8. Y. Wu, R. Fan, P. Yang, Nano Lett. 2, 83 (2002)

    Article  ADS  Google Scholar 

  9. M.T. Björk, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg, L. Samuelson, Appl. Phys. Lett. 81, 4458 (2003)

    Article  ADS  Google Scholar 

  10. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002)

    Article  ADS  Google Scholar 

  11. W.I. Park, G.-C. Yi, M.Y. Kim, S.J. Pennycook, Adv. Mater. 15, 526 (2002)

    Article  Google Scholar 

  12. W.I. Park, S.J. An, J. Long, G.-C. Yi, S. Hong, T. Joo, M.Y. Kim, J. Phys. Chem. B 108, 15457 (2004)

    Article  Google Scholar 

  13. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nature Materials, 4, 42 (2005)

    Article  ADS  Google Scholar 

  14. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, Appl. Phys. Lett. 81, 2291 (2002)

    Article  ADS  Google Scholar 

  15. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003)

    Article  ADS  Google Scholar 

  16. J.R. Guest, T.H. Stievater, G. Chen, E.A. Tabak, B.G. Orr, D.G. Steel, D. Gammon, D.S. Katzer, Science 293, 2224 (2001)

    Article  ADS  Google Scholar 

  17. T. Guenther, C. Lienau, T. Elsaesser, M. Clanemann, V.M. Axt, T. Kuhn, S. Eshlaghi, D. Wieck, Phys. Rev. Lett. 89, 057401 (2002)

    Article  ADS  Google Scholar 

  18. A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 75, 980 (1999)

    Article  ADS  Google Scholar 

  19. T. Makino, A. Ohtomo, C.H. Chia, Y. Segawa, H. Koinuma, K. Kawasaki, Physica E 21, 671 (2004)

    Article  ADS  Google Scholar 

  20. M. Zerovos, L.-F. Feiner, J. Appl. Phys. 95, 281 (2004)

    Article  ADS  Google Scholar 

  21. M. Zamfirescu, A. Kavokin, B. Gil, G. Maplpuech, M. Kaliteevski, Phys. Rev. B 65, 161205 (2001)

    Article  ADS  Google Scholar 

  22. S.F. Chichibu, T. Sota, G. Cantwell, D.B. Eason, C.W. Litton, J. Appl. Phys. 93, 756 (2003)

    Article  ADS  Google Scholar 

  23. D.C. Reynolds, C.W. Litton, D.C. Look, J.E. Hoelscher, C. Claflin, T.C. Collins, J. Nause, B. Nemeth, J. Appl. Phys. 95, 4802 (2004)

    Article  ADS  Google Scholar 

  24. M. Tchounkeu, O. Briot, B. Gil, J.P. Alexis, R.L. Aulombard, J. Appl. Phys. 80, 5352 (1996)

    Article  ADS  Google Scholar 

  25. T. Wamura, Y. Masumoto, T. Kawamura, Appl. Phys. Lett. 59, 1758 (1991)

    Article  ADS  Google Scholar 

  26. T. Yatsui, J. Lim, M. Ohtsu, S.J. An, G.-C. Yi, Appl. Phys. Lett. 85, 727 (2004)

    Article  ADS  Google Scholar 

  27. T. Yatsui, M. Ohtsu, S.J. An, G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005)

    Article  ADS  Google Scholar 

  28. T. Yatsui, M. Ohtsu, S.J. An, J. Yoo, G.-C. Yi, Opt. Rev. 13, 218 (2006)

    Article  Google Scholar 

  29. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S.J. An, J. oo, G.-C. Yi, Appl. Phys. Lett. 90, 223110 (2007)

    Google Scholar 

  30. W.I. Park, D.H. Kim, S.W. Jung, G.-C. Yi, Appl. Phys. Lett. 90, 80 (2002)

    Google Scholar 

  31. B. Coffey, R. Friedberg, Phys. Rev. A 17, 1033 (1978)

    Article  ADS  Google Scholar 

  32. K. Kobayashi, S. Sangu, T. Kawazoe, M. Ohtsu, J. Lumin. 112, 117 (2005)

    Article  Google Scholar 

  33. S. Sangu, K. Kobayashi, A. Shojiguchi, M. Ohtsu, Phys. Rev. B 69, 115334 (2005)

    Article  ADS  Google Scholar 

  34. S. Sangu, K. Kobayashi, T. Kawazoe, A. Shojiguchi, M. Ohtsu, Trans. Mater. Res. Soc. Jap. 28, 1035 (2003)

    Google Scholar 

  35. A. Zenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Nature 418, 612 (2002)

    Article  ADS  Google Scholar 

  36. Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Science 295, 102 (2002)

    Article  ADS  Google Scholar 

  37. W.I. Park, G.-C. Yi, M. Jang, Appl. Phys. Lett. 79, 2022 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. Tadashi Kawazoe (The University of Tokyo), Suguru Sangu (Ricoh Company, Ltd.), and Prof. Kiyoshi Kobayashi (Yamanashi University) for many fruitful discussions. The authors thank Dr. Jinkyoung Yoo (Pohang University of Science and Technology) for sample preparation of ZnO nanorod and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yatsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yatsui, T., Yi, GC., Ohtsu, M. (2012). Nanophotonic Device Application Using Semiconductor Nanorod Heterostructures. In: Yi, GC. (eds) Semiconductor Nanostructures for Optoelectronic Devices. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22480-5_10

Download citation

Publish with us

Policies and ethics