Skip to main content

Microbial Symbioses in the Digestive Tract of Lower Termites

  • Chapter
  • First Online:
Beneficial Microorganisms in Multicellular Life Forms

Abstract

The symbiotic gut microbiota of termites plays important roles in lignocellulose digestion and host nutrition. In contrast to the higher (evolutionarily advanced) termites, whose gut microbiota is largely prokaryotic, the capacity of lower (primitive) termites to digest wood depends on the cellulolytic gut flagellates housed in their enlarged hindgut paunch. The flagellates initiate a microbial feeding chain driven by the primary fermentations of carbohydrates to short-chain fatty acids, the major energy source of the host. Hydrogen, a central intermediate in the hindgut fermentations, is efficiently recycled by homoacetogenic spirochetes. They prevail over methanogenic archaea, which are restricted to particular microniches at the hindgut wall or within the flagellates. The spatial separation of microbial populations and metabolic activities gives rise to steep gradients of metabolites. The continuous influx of oxygen into the hindgut affects microbial metabolism in the microoxic periphery, and the anoxic status of the gut center is maintained only by the rapid reduction of oxygen by both aerobic and anaerobic microorganisms. Moreover, the gut microbiota also compensates for the low nitrogen content of wood by fixing atmospheric nitrogen, assimilating ammonia, providing essential amino acids and vitamins, and efficiently recycling nitrogenous wastes. The microorganisms responsible for these reactions are mostly unknown, but recent studies have implicated the bacterial symbionts of termite gut flagellates in these processes. These symbionts specifically colonize either the surface or the cytoplasm of the flagellates and represent novel bacterial lineages that occur exclusively in the hindgut of termites, often cospeciating with their respective hosts. Genome information indicates that the uncultivated symbionts of flagellates play a major role in the nitrogen metabolism of this tripartite symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Benemann JR (1973) Nitrogen fixation in termites. Science 181:164–165

    PubMed  CAS  Google Scholar 

  • Bignell DE (2006) Termites as soil engineers and soil processors. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 183–220

    Google Scholar 

  • Bignell DE (2011) Morphology, physiology, biochemistry and functional design of the termite gut: an evolutionary wonderland. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 375–412

    Google Scholar 

  • Boga HI, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786

    PubMed  CAS  Google Scholar 

  • Boga HI, Ji R, Ludwig W, Brune A (2007) Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Arch Microbiol 187:15–27

    PubMed  CAS  Google Scholar 

  • Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387

    PubMed  CAS  Google Scholar 

  • Brauman A, Dore J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    PubMed  CAS  Google Scholar 

  • Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht, pp 209–231

    Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    CAS  Google Scholar 

  • Breznak JA, Leadbetter JR (2006) Termite gut spirochetes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 7, 3rd edn, Proteobacteria: delta and epsilon subclasses. Deeply rooting bacteria. Springer, New York, pp 318–329

    Google Scholar 

  • Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630

    PubMed  CAS  Google Scholar 

  • Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–580

    PubMed  CAS  Google Scholar 

  • Brugerolle G, Radek R (2006) Symbiotic protozoa of termites. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 243–269

    Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    CAS  Google Scholar 

  • Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E (eds) The prokaryotes, vol 1, 3rd edn, Symbiotic associations, biotechnology, applied microbiology. Springer, New York, pp 439–474

    Google Scholar 

  • Brune A (2007) Woodworker’s digest. Nature 450:487–488

    PubMed  CAS  Google Scholar 

  • Brune A (2009) Symbionts aiding digestion. In: Resh VH, Cardé RT (eds) Encyclopedia of insects, 2nd edn. Academic, New York, pp 978–983

    Google Scholar 

  • Brune A (2010a) Methanogenesis in the digestive tracts of insects. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 1. Springer, Heidelberg, pp 707–728

    Google Scholar 

  • Brune A (2010b) Methanogens in the digestive tract of termites. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea. Springer, Heidelberg, pp 81–100

    Google Scholar 

  • Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475

    Google Scholar 

  • Brune A, Stingl U (2005) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In: Overmann J (ed) Molecular basis of symbiosis. Springer, Berlin, pp 39–60

    Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    PubMed  CAS  Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    PubMed  CAS  Google Scholar 

  • Cepicka I, Hampl V, Kulda J (2010) Critical taxonomic revision of parabasalids with description of one new genus and three new species. Protist 161:400–433

    PubMed  Google Scholar 

  • Cleveland LR, Grimstone AV (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proc R Soc Lond Ser B Biol Sci 159:668–686

    Google Scholar 

  • Cotta MA, Russel JB (1997) Digestion of nitrogen in the rumen: a model for metabolism of nitrogen compounds in gastrointestinal environments. In: Mackie RI, White BA (eds) Gastrointestinal microbiology, vol 1. Chapman and Hall, New York, pp 380–423

    Google Scholar 

  • Desai MS, Strassert JFH, Meuser K et al (2010) Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol 12:2120–2132

    PubMed  CAS  Google Scholar 

  • Dröge S, Fröhlich J, Radek R, König H (2006) Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. Appl Environ Microbiol 72:392–397

    PubMed  Google Scholar 

  • Dröge S, Rachel R, Radek R, König H (2008) Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae. Int J Syst Evol Microbiol 58:1079–1083

    PubMed  Google Scholar 

  • Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    PubMed  CAS  Google Scholar 

  • Geib SM, Filley TR, Hatcher PG et al (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937

    PubMed  CAS  Google Scholar 

  • Graber JR, Breznak JA (2005) Folate cross-feeding supports symbiotic homoacetogenic spirochetes. Appl Environ Microbiol 71:1883–1889

    PubMed  CAS  Google Scholar 

  • Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320

    PubMed  CAS  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York, 772 pp

    Google Scholar 

  • Hampl V, Silberman JD, Stechmann A et al (2008) Genetic evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. PLoS One 3:e1383

    PubMed  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864

    PubMed  CAS  Google Scholar 

  • Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W et al (2009) Genome analysis of “Elusimicrobium minutum,” the first cultivated representative of the phylum “Elsimicrobia” (formerly Termite Group 1). Appl Environ Microbiol 75:2841–2849

    PubMed  CAS  Google Scholar 

  • Hongoh Y (2011) Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68:1311–1325

    PubMed  CAS  Google Scholar 

  • Hongoh Y, Ohkuma M (2010) Termite gut flagellates and their methanogenic and eubacterial symbionts. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea. Springer, Heidelberg, pp 55–79

    Google Scholar 

  • Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    PubMed  CAS  Google Scholar 

  • Hongoh Y, Deevong P, Inoue T et al (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    PubMed  CAS  Google Scholar 

  • Hongoh Y, Sato T, Dolan MF et al (2007) The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Appl Environ Microbiol 73:6270–6276

    PubMed  CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T et al (2008a) Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci USA 105:5555–5560

    PubMed  CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T et al (2008b) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109

    PubMed  CAS  Google Scholar 

  • Iida T, Ohkuma M, Ohtoko K, Kudo T (2000) Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol Ecol 34:17–26

    PubMed  CAS  Google Scholar 

  • Ikeda-Ohtsubo W, Brune A (2009) Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Mol Ecol 18:332–342

    PubMed  CAS  Google Scholar 

  • Ikeda-Ohtsubo W, Desai M, Stingl U, Brune A (2007) Phylogenetic diversity of ‘Endomicrobia’ and their specific affiliation with termite gut flagellates. Microbiology 153:3458–3465

    PubMed  CAS  Google Scholar 

  • Ikeda-Ohtsubo W, Faivre N, Brune A (2010) Putatively free-living ‘Endomicrobia’ — ancestors of the intracellular symbionts of termite gut flagellates? Environ Microbiol Rep 2:554–559

    Google Scholar 

  • Inoue T, Kitade O, Yoshimura T, Yamaoka I (2000) Symbiotic associations with protists. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht, pp 275–288

    Google Scholar 

  • Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    PubMed  CAS  Google Scholar 

  • Kitade O (2004) Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microbiol Environ 19:215–220

    Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    PubMed  CAS  Google Scholar 

  • Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    PubMed  CAS  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    PubMed  CAS  Google Scholar 

  • Leander BS, Keeling PJ (2004) Symbiotic innovation in the oxymonad Streblomastix strix. J Eukaryot Microbiol 51:291–300

    PubMed  Google Scholar 

  • Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345

    PubMed  CAS  Google Scholar 

  • Lilburn TG, Kim KS, Ostrom NE et al (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498

    PubMed  CAS  Google Scholar 

  • Lo N, Eggleton P (2011) Termite phylogenetics and co-cladogenesis with symbionts. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 27–50

    Google Scholar 

  • Lo N, Tokuda G, Watanabe H et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    PubMed  CAS  Google Scholar 

  • Lo N, Watanabe H, Tokuda G (2011) Evolution and function of endogenous termite cellulases. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 51–67

    Google Scholar 

  • Müller M (1988) Energy metabolism of protozoa without mitochondria. Annu Rev Microbiol 42:465–488

    PubMed  Google Scholar 

  • Nakajima H, Hongoh Y, Noda S et al (2006) Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of termites. Biosci Biotechnol Biochem 70:211–218

    PubMed  CAS  Google Scholar 

  • Nalepa CA (2011) Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 69–95

    Google Scholar 

  • Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201

    Google Scholar 

  • Nobre T, Rouland-Lefèvre C, Aanen DK (2011) Comparative biology of fungus cultivation in termites and ants. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 193–210

    Google Scholar 

  • Noda S, Ohkuma M, Usami R et al (1999) Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Appl Environ Microbiol 65:4935–4942

    PubMed  CAS  Google Scholar 

  • Noda S, Ohkuma M, Yamada A et al (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69:625–633

    PubMed  CAS  Google Scholar 

  • Noda S, Iida T, Kitade S et al (2005) Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl Environ Microbiol 71:8811–8817

    PubMed  CAS  Google Scholar 

  • Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, Hongoh Y, Constantino R, Uys V, Zhong J, Kudo T, Ohkuma M (2007) Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16:1257–1266

    PubMed  CAS  Google Scholar 

  • Odelson DA, Breznak JA (1985a) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49:622–626

    PubMed  CAS  Google Scholar 

  • Odelson DA, Breznak JA (1985b) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621

    PubMed  CAS  Google Scholar 

  • Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438

    Google Scholar 

  • Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Iida T, Kudo T (1999) Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181:123–129

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Hongoh Y, Kudo T (2006) Diversity and molecular analyses of yet-uncultured microorganisms. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Heidelberg, pp 303–317

    Google Scholar 

  • Ohkuma M, Sato T, Noda S et al (2007) The candidate phylum ‘Termite Group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60:467–476

    PubMed  CAS  Google Scholar 

  • Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467

    PubMed  CAS  Google Scholar 

  • Pester M, Brune A (2006) Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol 8:1261–1270

    PubMed  CAS  Google Scholar 

  • Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1:551–565

    PubMed  CAS  Google Scholar 

  • Pester M, Tholen A, Friedrich MW, Brune A (2007) Methane oxidation in termite hindguts: absence of evidence and evidence of absence. Appl Environ Microbiol 73:2024–2028

    PubMed  CAS  Google Scholar 

  • Radek R, Nitsch G (2007) Ectobiotic spirochetes of flagellates from the termite Mastotermes darwiniensis: attachment and cyst formation. Eur J Protistol 43:281–294

    PubMed  Google Scholar 

  • Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht, pp 289–306

    Google Scholar 

  • Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci USA 106:19521–19526

    PubMed  CAS  Google Scholar 

  • Salmassi TM, Leadbetter JR (2003) Molecular aspects of CO2-reductive acetogenesis in cultivated spirochetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149:2529–2537

    PubMed  CAS  Google Scholar 

  • Sato T, Hongoh Y, Noda S et al (2009) Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 11:1007–1015

    PubMed  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem 69:1145–1155

    PubMed  CAS  Google Scholar 

  • Stingl U, Radek R, Yang H, Brune A (2005) “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 71:1473–1479

    PubMed  CAS  Google Scholar 

  • Strassert JFH, Desai MS, Brune A, Radek R (2009) The true diversity of devescovinid flagellates in the termite Incisitermes marginipennis. Protist 160:522–535

    PubMed  Google Scholar 

  • Strassert JFH, Desai MS, Radek R, Brune A (2010) Identification and localization of the multiple bacterial symbionts of the termite gut flagellate Joenia annectens. Microbiology 156:2068–2079

    PubMed  CAS  Google Scholar 

  • Tamm SL (1982) Flagellated epibiotic bacteria propel a eucaryotic cell. J Cell Biol 94:697–709

    PubMed  CAS  Google Scholar 

  • Tartar A, Wheeler MM, Zhou X et al (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:25

    PubMed  Google Scholar 

  • Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449

    PubMed  CAS  Google Scholar 

  • Tholen A, Pester M, Brune A (2007) Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. FEMS Microbiol Ecol 62:303–312

    PubMed  CAS  Google Scholar 

  • Todaka N, Moriya S, Saita K, Hondo T, Kiuchi I, Takasu H, Ohkuma M, Piero C, Hayashizaki Y, Kudo T (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59:592–599

    PubMed  CAS  Google Scholar 

  • Todaka N, Inoue T, Saita K, Ohkuma M, Nalepa CA, Lenz M, Kudo T, Moriya S (2010) Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS One 5:e8636

    PubMed  Google Scholar 

  • Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3:336–339

    PubMed  CAS  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    PubMed  CAS  Google Scholar 

  • Watanabe H, Tokuda G (2009) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Google Scholar 

  • Wenzel M, Radek R, Brugerolle G, König H (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39:11–23

    Google Scholar 

  • Wertz JT, Breznak JA (2007) Physiological ecology of Stenoxybacter acetivorans, an obligate microaerophile in termite guts. Appl Environ Microbiol 73:6829–6841

    PubMed  CAS  Google Scholar 

  • Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7:916–932

    PubMed  CAS  Google Scholar 

  • Zhou X, Smith JA, Oi FM, Koehler PG, Bennett GW, Scharf ME (2007) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395:29–39

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Brune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brune, A. (2012). Microbial Symbioses in the Digestive Tract of Lower Termites. In: Rosenberg, E., Gophna, U. (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21680-0_1

Download citation

Publish with us

Policies and ethics