Skip to main content

Systems with Slope Restricted Nonlinearities and Neural Networks Dynamics

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6692))

Included in the following conference series:

Abstract

The quite large standard class of additive neural networks is considered from the point of view of the qualitative theory of differential equations. Connections with the theory of absolute stability are pointed out and a new class of Liapunov functions is introduced, starting from the positiveness theory (Yakubovich-Kalman-Popov lemma). The results are valid for a quite large class of dynamical systems and they are tested on some neural network structures. In the concluding part some perspective research is mentioned, including synchronization and time-delay effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbălat, I., Halanay, A.: Conditions de comportement “presque linéaire” dans la théorie des oscillations. Rev. Roum. Sci. Techn.-Electrotechn. et Energ. 19(2), 321–341 (1974)

    Google Scholar 

  2. Calvert, B.D., Marinov, C.A.: Another K-Winners-Take-All analog neural network. IEEE Trans. Neural Networks 11(4), 829–838 (2000)

    Article  Google Scholar 

  3. Cohen, M.A.: The construction of arbitrary stable dynamics in nonlinear neural networks. Neural Networks 5, 83–103 (1992)

    Article  Google Scholar 

  4. Danciu, D.: Dynamics of neural networks as nonlinear systems with several equilibria. In: Pazos, A., Sierra, A., Buceta, W. (eds.) Advancing Artificial Intelligence through Biological Process Applications, pp. 331–357. Medical Information Science Reference, IGI Global (2009)

    Google Scholar 

  5. Danciu, D., Răsvan, V.: On Popov-type stability criteria for neural networks. In: Elec. J. Qual. Theory Diff. Equ (Proc. 6th Coll. Qual. Theory Diff. Equ. QTDE), pp. 1–10 (1999), http://www.math.u-szeged.hu/ejqtde/6/623.pdf

  6. Danciu, D., Răsvan, V.: Dynamics of neural networks - some qualitative properties. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 8–15. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Danciu, D., Răsvan, V.: Neural networks. equilibria, synchronization, delays. In: Dopico, J.R., Dorado, J., Pazos, A. (eds.) Encyclopedia of Artificial Intelligence, pp. 1219–1225. Information Science Reference, IGI Global (2009)

    Google Scholar 

  8. Danciu, D., Răsvan, V.: Gradient like behavior and high gain design of KWTA neural networks. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 24–32. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Forti, M.: Some extensions of a new method to analyze complete stability of neural networks. IEEE Trans. Neural Networks 13(5), 1230–1238 (2002)

    Article  Google Scholar 

  10. Gantmakher, F.R.: Theory of matrices, fourth augmented edn.“Nauka” Publishing House, Moscow (1988) (in Russian)

    MATH  Google Scholar 

  11. Ghelig, A.K., Leonov, G.A., Yakubovich, V.A.: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. World Scientific, Singapore (2004)

    Google Scholar 

  12. Gupta, M.M., Jin, L., Homma, N.: Dynamic Neural Networks. IEEE Press & J. Wiley, N. Y (2003)

    Book  Google Scholar 

  13. Haddad, W.M.: Correction to “absolute stability criteria for multiple slope-restricted monotonic nonlinearities”. IEEE Trans. on Autom. Control 42(4), 591 (1997)

    Article  Google Scholar 

  14. Haddad, W.M., Kapila, V.: Absolute stability criteria for multiple slope-restricted monotonic nonlinearities. IEEE Trans. on Autom. Control 40(2), 361–365 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halanay, A., Răsvan, V.: Absolute stability of feedback systems with several differentiable non-linearities. Int. J. Systems Sci. 22(10), 1911–1927 (1991)

    Article  MATH  Google Scholar 

  16. Halanay, A., Răsvan, V.: Applications of Liapunov Methods to Stability, Mathematics and its Applications, vol. 245. Kluwer Academic Publishers, Dordrecht (1993)

    Book  MATH  Google Scholar 

  17. Leonov, G.A., Reitmann, V., Smirnova, V.B.: Non-local methods for pendulum-like feedback systems, Teubner Texte zur Mathematik, vol. 132. Teubner Verlag, Stuttgart-Leipzig (1992)

    Book  MATH  Google Scholar 

  18. Noldus, E., Loccufier, M.: An application of Liapunov’s method for the analysis of neural networks. Journ. of Comp.and Appl. Math. 50, 425–432 (1995)

    Google Scholar 

  19. Noldus, E., Vingerhoeds, R., Loccufier, M.: Stability of analogue neural classification networks. Int. Journ. Systems. Sci. 25(1), 19–31 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Popov, V.M.: Hyperstability of Control Systems. Editura Academiei & Springer-Verlag, Bucharest & Heidelberg (1973)

    Book  MATH  Google Scholar 

  21. Răsvan, V.: Dynamical systems with several equilibria and natural Liapunov functions. Archivum mathematicum 34(1), 207–215 (1998)

    Google Scholar 

  22. Răsvan, V., Danciu, D., Popescu, D.: On absolute (robust) stability: slope restrictions and stability multipliers. Int. J. Rob. Nonlin. Contr. (2011) (submitted)

    Google Scholar 

  23. Yakubovich, V.A.: Frequency domain conditions of absolute stability and dissipativeness of control systems with a single differentiable element (in Russian). Doklady Akad. Nauk SSSR 160(2), 298–301 (1965)

    Google Scholar 

  24. Yakubovich, V.A.: The method of the matrix inequalities in the theory of stability for nonlinear controlled systems II. Absolute stability in the class of slope restricted nonlinearities (in Russian). Avtom. i telemekh. 29(4), 588–590 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danciu, D., Răsvan, V. (2011). Systems with Slope Restricted Nonlinearities and Neural Networks Dynamics. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21498-1_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21497-4

  • Online ISBN: 978-3-642-21498-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics