Skip to main content

Structure and Degradation Mechanisms of 3′ to 5′ Exoribonucleases

  • Chapter
  • First Online:
Ribonucleases

Abstract

Exoribonucleases are enzymes that cleave RNA molecules by removing terminal nucleotides from the 3′ or 5′ end of the RNA molecules. They are key factors in RNA metabolism and have a relevant role in the processing and degradation of all types of RNAs. The 3′ to 5′ exoribonucleases are divided into families, according to their sequence and structural characteristics. The PDX family contains phosphate-dependent degradative enzymes, which can also perform the synthesis of RNA tails when phosphate is limiting. The RNB family contains hydrolytic enzymes with a similar domain organization. All proteins from this widespread family present the characteristic RNB domain responsible for the 3′ to 5′ exoribonuclease activity. In eukaryotes they can act alone or in a complex, the exosome, where they are the only active component. Finally, the DEDD family includes both RNA and DNA exonucleases and they present a similar mechanism of action. In this chapter, we will summarize the available information regarding the 3′ to 5′ exoribonucleases and discuss their importance for the RNA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18:5399–5410

    PubMed  CAS  Google Scholar 

  • Amblar M, Arraiano CM (2005) A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding. FEBS J 272:363–374

    PubMed  CAS  Google Scholar 

  • Amblar M, Barbas A, Fialho AM, Arraiano CM (2006) Characterization of the functional domains of Escherichia coli RNase II. J Mol Biol 360:921–933

    PubMed  CAS  Google Scholar 

  • Amblar M, Barbas A, Goméz-Puertas P, Arraiano CM (2007) The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization. RNA 13:317–327

    PubMed  CAS  Google Scholar 

  • Andrade JM, Cairrão F, Arraiano CM (2006) RNase R affects gene expression in stationary phase: regulation of ompA. Mol Microbiol 60:219–228

    PubMed  CAS  Google Scholar 

  • Andrade JM, Hajnsdorf E, Régnier P, Arraiano CM (2009a) The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R. RNA 15:316–326

    PubMed  CAS  Google Scholar 

  • Andrade JM, Pobre V, Silva IJ, Domingues S, Arraiano CM (2009b) The role of 3′-5′ exoribonucleases in RNA degradation. Prog Mol Biol Transl Sci 85:187–229

    PubMed  CAS  Google Scholar 

  • Arraiano CM, Maquat LE (2003) Post-transcriptional control of gene expression: effectors of mRNA decay. Mol Microbiol 49:267–276

    PubMed  CAS  Google Scholar 

  • Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC (2010a) The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 34:883–923

    PubMed  CAS  Google Scholar 

  • Arraiano CM, Matos RG, Barbas A (2010b) RNase II: the finer details of the Modus operandi of a molecular killer. RNA Biol 7:276–281

    PubMed  CAS  Google Scholar 

  • Awano N, Inouye M, Phadtare S (2008) RNase activity of polynucleotide phosphorylase is critical at low temperature in Escherichia coli and is complemented by RNase II. J Bacteriol 190:5924–5933

    PubMed  CAS  Google Scholar 

  • Awano N, Rajagopal V, Arbing M, Patel S, Hunt J, Inouye M, Phadtare S (2010) Escherichia coli RNase R has dual activities, helicase and RNase. J Bacteriol 192:1344–1352

    PubMed  CAS  Google Scholar 

  • Barbas A, Matos RG, Amblar M, Lopez-Viñas E, Goméz-Puertas P, Arraiano CM (2008) New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. J Biol Chem 283:13070–13076

    PubMed  CAS  Google Scholar 

  • Barbas A, Matos RG, Amblar M, Lopez-Viñas E, Goméz-Puertas P, Arraiano CM (2009) Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a “super-enzyme”. J Biol Chem 284:20486–20498

    PubMed  CAS  Google Scholar 

  • Beran RK, Simons RW (2001) Cold-temperature induction of Escherichia coli polynucleotide phosphorylase occurs by reversal of its autoregulation. Mol Microbiol 39:112–125

    PubMed  CAS  Google Scholar 

  • Bollenbach TJ, Lange H, Gutierrez R, Erhardt M, Stern DB, Gagliardi D (2005) RNR1, a 3′-5′ exoribonuclease belonging to the RNR superfamily, catalyzes 3′ maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana. Nucleic Acids Res 33:2751–2763

    PubMed  CAS  Google Scholar 

  • Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E (2009) The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139:547–559

    PubMed  CAS  Google Scholar 

  • Bralley P, Gust B, Chang S, Chater KF, Jones GH (2006) RNA 3′-tail synthesis in Streptomyces: in vitro and in vivo activities of RNase PH, the SCO3896 gene product and polynucleotide phosphorylase. Microbiology 152:627–636

    PubMed  CAS  Google Scholar 

  • Briani F, Del Favero M, Capizzuto R, Consonni C, Zangrossi S, Greco C, De Gioia L, Tortora P, Dehò G (2007) Genetic analysis of polynucleotide phosphorylase structure and functions. Biochimie 89:145–157

    PubMed  CAS  Google Scholar 

  • Brown CE, Tarun SZ Jr, Boeck R, Sachs AB (1996) PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol Cell Biol 16:5744–5753

    PubMed  CAS  Google Scholar 

  • Buttner K, Wenig K, Hopfner KP (2005) Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 20:461–471

    PubMed  Google Scholar 

  • Cairrão F, Arraiano CM (2006) The role of endoribonucleases in the regulation of RNase R. Biochem Biophys Res Commun 343:731–737

    PubMed  Google Scholar 

  • Cairrão F, Chora A, Zilhão R, Carpousis AJ, Arraiano CM (2001) RNase II levels change according to the growth conditions: characterization of gmr, a new Escherichia coli gene involved in the modulation of RNase II. Mol Microbiol 39:1550–1561

    PubMed  Google Scholar 

  • Cairrão F, Cruz A, Mori H, Arraiano CM (2003) Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 50:1349–1360

    PubMed  Google Scholar 

  • Cairrão F, Arraiano CM, Newbury S (2005) Drosophila gene tazman, an orthologue of the yeast exosome component Rrp44p/Dis3, is differentially expressed during development. Dev Dyn 232:733–737

    PubMed  Google Scholar 

  • Callahan KP, Butler JS (2010) TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6. J Biol Chem 285:3540–3547

    PubMed  CAS  Google Scholar 

  • Campos-Guillén J, Bralley P, Jones GH, Bechhofer DH, Olmedo-Alvarez G (2005) Addition of poly(A) and heteropolymeric 3′ ends in Bacillus subtilis wild-type and polynucleotide phosphorylase-deficient strains. J Bacteriol 187:4698–4706

    PubMed  Google Scholar 

  • Cannistraro VJ, Kennell D (1994) The processive reaction mechanism of ribonuclease II. J Mol Biol 243:930–943

    PubMed  CAS  Google Scholar 

  • Carpousis AJ, Van Houwe G, Ehretsmann C, Krisch HM (1994) Copurification of E. coli RNaase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76:889–900

    PubMed  CAS  Google Scholar 

  • Carzaniga T, Briani F, Zangrossi S, Merlino G, Marchi P, Dehò G (2009) Autogenous regulation of Escherichia coli polynucleotide phosphorylase expression revisited. J Bacteriol 191:1738–1748

    PubMed  CAS  Google Scholar 

  • Charpentier X, Faucher SP, Kalachikov S, Shuman HA (2008) Loss of RNase R induces competence development in Legionella pneumophila. J Bacteriol 190:8126–8136

    PubMed  CAS  Google Scholar 

  • Cheng ZF, Deutscher MP (2003) Quality control of ribosomal RNA mediated by polynucleotide phosphorylase and RNase R. Proc Natl Acad Sci USA 100:6388–6393

    PubMed  CAS  Google Scholar 

  • Cheng ZF, Deutscher MP (2005) An important role for RNase R :in mRNA decay. Mol Cell 17:313–318

    PubMed  CAS  Google Scholar 

  • Cheng ZF, Zuo Y, Li Z, Rudd KE, Deutscher MP (1998) The vacB gene required for virulence in Shigella flexneri and Escherichia coli encodes the exoribonuclease RNase R. J Biol Chem 273:14077–14080

    PubMed  CAS  Google Scholar 

  • Chin KH, Yang CY, Chou CC, Wang AH, Chou SH (2006) The crystal structure of XC847 from Xanthomonas campestris: a 3′-5′ oligoribonuclease of DnaQ fold family with a novel opposingly shifted helix. Proteins 65:1036–1040

    PubMed  CAS  Google Scholar 

  • Choi JM, Park EY, Kim JH, Chang SK, Cho Y (2004) Probing the functional importance of the hexameric ring structure of RNase PH. J Biol Chem 279:755–764

    PubMed  CAS  Google Scholar 

  • Cudny H, Deutscher MP (1980) Apparent involvement of ribonuclease D in the 3′ processing of tRNA precursors. Proc Natl Acad Sci USA 77:837–841

    PubMed  CAS  Google Scholar 

  • Cudny H, Zaniewski R, Deutscher MP (1981) Escherichia coli RNase D. Catalytic properties and substrate specificity. J Biol Chem 256:5633–5637

    PubMed  CAS  Google Scholar 

  • Datta AK, Niyogi K (1975) A novel oligoribonuclease of Escherichia coli. II. Mechanism of action. J Biol Chem 250:7313–7319

    PubMed  CAS  Google Scholar 

  • Deutscher MP, Marlor CW (1985) Purification and characterization of Escherichia coli RNase T. J Biol Chem 260:7067–7071

    PubMed  CAS  Google Scholar 

  • Deutscher MP, Reuven NB (1991) Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 88:3277–3280

    PubMed  CAS  Google Scholar 

  • Deutscher MP, Marshall GT, Cudny H (1988) RNase PH: an Escherichia coli phosphate-dependent nuclease distinct from polynucleotide phosphorylase. Proc Natl Acad Sci USA 85:4710–4714

    PubMed  CAS  Google Scholar 

  • Donovan WP, Kushner SR (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci USA 83:120–124

    PubMed  CAS  Google Scholar 

  • Dziembowski A, Lorentzen E, Conti E, Seraphin B (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14:15–22

    PubMed  CAS  Google Scholar 

  • Erova TE, Kosykh VG, Fadl AA, Sha J, Horneman AJ, Chopra AK (2008) Cold shock exoribonuclease R (VacB) is involved in Aeromonas hydrophila pathogenesis. J Bacteriol 190:3467–3474

    PubMed  CAS  Google Scholar 

  • Evguenieva-Hackenberg E, Walter P, Hochleitner E, Lottspeich F, Klug G (2003) An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 4:889–893

    PubMed  CAS  Google Scholar 

  • Fang M, Zeisberg WM, Condon C, Ogryzko V, Danchin A, Mechold U (2009) Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis. Nat Struct Mol Biol 37:5114–5125

    CAS  Google Scholar 

  • Fiedler TJ, Vincent HA, Zuo Y, Gavrialov O, Malhotra A (2004) Purification and crystallization of Escherichia coli oligoribonuclease. Acta Crystallogr D Biol Crystallogr 60:736–739

    PubMed  Google Scholar 

  • Frazão C, McVey CE, Amblar M, Barbas A, Vonrhein C, Arraiano CM, Carrondo MA (2006) Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature 443:110–114

    PubMed  Google Scholar 

  • Gabel HW, Ruvkun G (2008) The exonuclease ERI-1 has a conserved dual role in 5.8S rRNA processing and RNAi. Nat Struct Mol Biol 15:531–533

    PubMed  CAS  Google Scholar 

  • García-Mena J, Das A, Sánchez-Trujillo A, Portier C, Montañez C (1999) A novel mutation in the KH domain of polynucleotide phosphorylase affects autoregulation and mRNA decay in Escherichia coli. Mol Microbiol 33:235–248

    PubMed  Google Scholar 

  • Gatewood ML, Jones GH (2010) (p)ppGpp inhibits polynucleotide phosphorylase from streptomyces but not from Escherichia coli and increases the stability of bulk mRNA in Streptomyces coelicolor. J Bacteriol 192:4275–4280

    PubMed  CAS  Google Scholar 

  • Ge Z, Mehta P, Richards J, Karzai AW (2010) Non-stop mRNA decay initiates at the ribosome. Mol Microbiol 78:1159–1170

    PubMed  CAS  Google Scholar 

  • Ghosh S, Deutscher MP (1999) Oligoribonuclease is an essential component of the mRNA decay pathway. Proc Natl Acad Sci USA 96:4372–4377

    PubMed  CAS  Google Scholar 

  • Goverde RL, Huis in't Veld JH, Kusters JG, Mooi FR (1998) The psychrotrophic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5 degrees C). Mol Microbiol 28:555–569

    PubMed  CAS  Google Scholar 

  • Grunberg-Manago M, Oritz PJ, Ochoa S (1955) Enzymatic synthesis of nucleic acid-like polynucleotides. Science 122:907–910

    PubMed  CAS  Google Scholar 

  • Hanekamp T, Thorsness PE (1999) YNT20, a bypass suppressor of yme1 yme2, encodes a putative 3′-5′ exonuclease localized in mitochondria of Saccharomyces cerevisiae. Curr Genet 34:438–448

    PubMed  CAS  Google Scholar 

  • Harlow LS, Kadziola A, Jensen KF, Larsen S (2004) Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. Protein Sci 13:668–677

    PubMed  CAS  Google Scholar 

  • Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev 7:529–539

    CAS  Google Scholar 

  • Iost I, Dreyfus M (2006) DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res 34:4189–4197

    PubMed  CAS  Google Scholar 

  • Ishii R, Nureki O, Yokoyama S (2003) Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. J Biol Chem 278:32397–32404

    PubMed  CAS  Google Scholar 

  • Jarrige AC, Mathy N, Portier C (2001) PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader. EMBO J 20:6845–6855

    PubMed  CAS  Google Scholar 

  • Kelly KO, Deutscher MP (1992a) Characterization of Escherichia coli RNase PH. J Biol Chem 267:17153–17158

    PubMed  CAS  Google Scholar 

  • Kelly KO, Deutscher MP (1992b) The presence of only one of five exoribonucleases is sufficient to support the growth of Escherichia coli. J Bacteriol 174:6682–6684

    PubMed  CAS  Google Scholar 

  • Kelly KO, Reuven NB, Li Z, Deutscher MP (1992) RNase PH is essential for tRNA processing and viability in RNase-deficient Escherichia coli cells. J Biol Chem 267:16015–16018

    PubMed  CAS  Google Scholar 

  • Kennedy S, Wang D, Ruvkun G (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427:645–649

    PubMed  CAS  Google Scholar 

  • Lalonde MS, Zuo Y, Zhang J, Gong X, Wu S, Malhotra A, Li Z (2007) Exoribonuclease R in Mycoplasma genitalium can carry out both RNA processing and degradative functions and is sensitive to RNA ribose methylation. RNA 13:1957–1968

    PubMed  CAS  Google Scholar 

  • Lange H, Holec S, Cognat V, Pieuchot L, Le Ret M, Canaday J, Gagliardi D (2008) Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana. Mol Cell Biol 28:3038–3044

    PubMed  CAS  Google Scholar 

  • Lebreton A, Tomecki R, Dziembowski A, Seraphin B (2008) Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456:993–996

    PubMed  CAS  Google Scholar 

  • Li Z, Deutscher MP (1995) The tRNA processing enzyme RNase T is essential for maturation of 5S RNA. Proc Natl Acad Sci USA 92:6883–6886

    PubMed  CAS  Google Scholar 

  • Li Z, Deutscher MP (1996) Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86:503–512

    PubMed  CAS  Google Scholar 

  • Li Z, Zhan L, Deutscher MP (1996) Escherichia coli RNase T functions in vivo as a dimer dependent on cysteine 168. J Biol Chem 271:1133–1137

    PubMed  CAS  Google Scholar 

  • Li Z, Pandit S, Deutscher MP (1998) 3' exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci USA 95:2856–2861

    PubMed  CAS  Google Scholar 

  • Li Z, Pandit S, Deutscher MP (1999) Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T. RNA 5:139–146

    PubMed  CAS  Google Scholar 

  • Li Z, Reimers S, Pandit S, Deutscher MP (2002) RNA quality control: degradation of defective transfer RNA. EMBO J 21:1132–1138

    PubMed  CAS  Google Scholar 

  • Liang W, Deutscher MP (2010) A novel mechanism for ribonuclease regulation: transfer-messenger RNA (tmRNA) and its associated protein SmpB regulate the stability of RNase R. J Biol Chem 285:29054–29058

    PubMed  CAS  Google Scholar 

  • Lim J, Kuroki T, Ozaki K, Kohsaki H, Yamori T, Tsuruo T, Nakamori S, Imaoka S, Endo M, Nakamura Y (1997) Isolation of murine and human homologues of the fission-yeast dis3+ gene encoding a mitotic-control protein and its overexpression in cancer cells with progressive phenotype. Cancer Res 57:921–925

    PubMed  CAS  Google Scholar 

  • Lin PH, Lin-Chao S (2005) RhlB helicase rather than enolase is the beta-subunit of the Escherichia coli polynucleotide phosphorylase (PNPase)-exoribonucleolytic complex. Proc Natl Acad Sci USA 102:16590–16595

    PubMed  CAS  Google Scholar 

  • Littauer YZ, Soreq H (1982) Polynucleotide phosphorylase. Academic, New York

    Google Scholar 

  • Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237

    PubMed  CAS  Google Scholar 

  • Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E (2005) The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 12:575–581

    PubMed  CAS  Google Scholar 

  • Lu C, Ding F, Ke A (2010) Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring. PLoS ONE 5:e8739

    PubMed  Google Scholar 

  • Luttinger A, Hahn J, Dubnau D (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19:343–356

    PubMed  CAS  Google Scholar 

  • Malet H, Topf M, Clare DK, Ebert J, Bonneau F, Basquin J, Drazkowska K, Tomecki R, Dziembowski A, Conti E, Saibil HR, Lorentzen E (2010) RNA channelling by the eukaryotic exosome. EMBO Rep 11:936–942

    PubMed  CAS  Google Scholar 

  • Mamolen M, Smith A, Andrulis ED (2010) Drosophila melanogaster Dis3 N-terminal domains are required for ribonuclease activities, nuclear localization and exosome interactions. Nucleic Acids Res 38:5507–5517

    PubMed  CAS  Google Scholar 

  • Marujo PE, Hajnsdorf E, Le Derout J, Andrade R, Arraiano CM, Régnier P (2000) RNase II removes the oligo(A) tails that destabilize the rpsO mRNA of Escherichia coli. RNA 6:1185–1193

    PubMed  CAS  Google Scholar 

  • Matos RG, Barbas A, Arraiano CM (2009) RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. Biochem J 423:291–301

    PubMed  CAS  Google Scholar 

  • Matos RG, Barbas A, Arraiano CM (2010) Comparison of EMSA and SPR for the characterization of RNA-RNase II complexes. Protein J 29:394–397

    PubMed  CAS  Google Scholar 

  • Matos RG, Barbas A, Goméz-Puertas P, Arraiano CM (2011) Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA. Proteins 79:1853–1867

    Google Scholar 

  • Matus-Ortega ME, Regonesi ME, Pina-Escobedo A, Tortora P, Dehò G, García-Mena J (2007) The KH and S1 domains of Escherichia coli polynucleotide phosphorylase are necessary for autoregulation and growth at low temperature. Biochim Biophys Acta 1769:194–203

    PubMed  CAS  Google Scholar 

  • Mechold U, Ogryzko V, Ngo S, Danchin A (2006) Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells. Nucleic Acids Res 34:2364–2373

    PubMed  CAS  Google Scholar 

  • Mian IS (1997) Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res 25:3187–3195

    PubMed  CAS  Google Scholar 

  • Miczak A, Kaberdin VR, Wei CL, Lin-Chao S (1996) Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci USA 93:3865–3869

    PubMed  CAS  Google Scholar 

  • Midtgaard SF, Assenholt J, Jonstrup AT, Van LB, Jensen TH, Brodersen DE (2006) Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain. Proc Natl Acad Sci USA 103:11898–11903

    PubMed  CAS  Google Scholar 

  • Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′– > 5′ exoribonucleases. Cell 91:457–466

    PubMed  CAS  Google Scholar 

  • Mohanty BK, Maples VF, Kushner SR (2004) The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol 54:905–920

    PubMed  CAS  Google Scholar 

  • Nguyen LH, Erzberger JP, Root J, Wilson DM 3rd (2000) The human homolog of Escherichia coli Orn degrades small single-stranded RNA and DNA oligomers. J Biol Chem 275:25900–25906

    PubMed  CAS  Google Scholar 

  • Nurmohamed S, Vaidialingam B, Callaghan AJ, Luisi BF (2009) Crystal structure of Escherichia coli polynucleotide phosphorylase core bound to RNase E, RNA and manganese: implications for catalytic mechanism and RNA degradosome assembly. J Mol Biol 389:17–33

    PubMed  CAS  Google Scholar 

  • Ost KA, Deutscher MP (1991) Escherichia coli orfE (upstream of pyrE) encodes RNase PH. J Bacteriol 173:5589–5591

    PubMed  CAS  Google Scholar 

  • Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11:121–127

    PubMed  CAS  Google Scholar 

  • Piazza F, Zappone M, Sana M, Briani F, Dehò G (1996) Polynucleotide phosphorylase of Escherichia coli is required for the establishment of bacteriophage P4 immunity. J Bacteriol 178:5513–5521

    PubMed  CAS  Google Scholar 

  • Portier C, Dondon L, Grunberg-Manago M, Régnier P (1987) The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5' end. EMBO J 6:2165–2170

    PubMed  CAS  Google Scholar 

  • Portnoy V, Evguenieva-Hackenberg E, Klein F, Walter P, Lorentzen E, Klug G, Schuster G (2005) RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Rep 6:1188–1193

    PubMed  CAS  Google Scholar 

  • Pruijn GJ (2005) Doughnuts dealing with RNA. Nat Struct Mol Biol 12:562–564

    PubMed  CAS  Google Scholar 

  • Purusharth RI, Klein F, Sulthana S, Jager S, Jagannadham MV, Evguenieva-Hackenberg E, Ray MK, Klug G (2005) Exoribonuclease R interacts with endoribonuclease E and an RNA helicase in the psychrotrophic bacterium Pseudomonas syringae Lz4W. J Biol Chem 280:14572–14578

    PubMed  CAS  Google Scholar 

  • Purusharth RI, Madhuri B, Ray MK (2007) Exoribonuclease R in Pseudomonas syringae is essential for growth at low temperature and plays a novel role in the 3′ end processing of 16 and 5S ribosomal RNA. J Biol Chem 282:16267–16277

    PubMed  CAS  Google Scholar 

  • Py B, Higgins CF, Krisch HM, Carpousis AJ (1996) A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381:169–172

    PubMed  CAS  Google Scholar 

  • Redko Y, Condon C (2010) Maturation of 23S rRNA in Bacillus subtilis in the absence of Mini-III. J Bacteriol 192:356–359

    PubMed  CAS  Google Scholar 

  • Régnier P, Arraiano CM (2000) Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays 22:235–244

    PubMed  Google Scholar 

  • Regonesi ME, Del Favero M, Basilico F, Briani F, Benazzi L, Tortora P, Mauri P, Dehò G (2006) Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie 88:151–161

    PubMed  CAS  Google Scholar 

  • Robert-Le Meur M, Portier C (1992) E.coli polynucleotide phosphorylase expression is autoregulated through an RNase III-dependent mechanism. EMBO J 11:2633–2641

    PubMed  CAS  Google Scholar 

  • Rott R, Zipor G, Portnoy V, Liveanu V, Schuster G (2003) RNA polyadenylation and degradation in cyanobacteria are similar to the chloroplast but different from Escherichia coli. J Biol Chem 278:15771–15777

    PubMed  CAS  Google Scholar 

  • Sarkar D, Park ES, Emdad L, Randolph A, Valerie K, Fisher PB (2005) Defining the domains of human polynucleotide phosphorylase (hPNPaseOLD-35) mediating cellular senescence. Mol Cell Biol 25:7333–7343

    PubMed  CAS  Google Scholar 

  • Schaeffer D, Tsanova B, Barbas A, Reis FP, Dastidar EG, Sanchez-Rotunno M, Arraiano CM, van Hoof A (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16:56–62

    PubMed  CAS  Google Scholar 

  • Schneider C, Anderson JT, Tollervey D (2007) The exosome subunit Rrp44 plays a direct role in RNA substrate recognition. Mol Cell 27:324–331

    PubMed  CAS  Google Scholar 

  • Schneider C, Leung E, Brown J, Tollervey D (2009) The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37:1127–1140

    PubMed  CAS  Google Scholar 

  • Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, Clayton C (2008) A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res 36:3374–3388

    PubMed  CAS  Google Scholar 

  • Shi Z, Yang WZ, Lin-Chao S, Chak KF, Yuan HS (2008) Crystal structure of Escherichia coli PNPase: central channel residues are involved in processive RNA degradation. RNA 14:2361–2371

    PubMed  CAS  Google Scholar 

  • Siculella L, Damiano F, di Summa R, Tredici SM, Alduina R, Gnoni GV, Alifano P (2010) Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) as a negative modulator of polynucleotide phosphorylase activity in a 'rare' actinomycete. Mol Microbiol 77:716–729

    PubMed  CAS  Google Scholar 

  • Silva IJ, Saramago M, Dressaire C, Domingues S, Viegas SC, Arraiano CM (2011) Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. WIREs RNA Accepted

    Google Scholar 

  • Slomovic S, Portnoy V, Yehudai-Resheff S, Bronshtein E, Schuster G (2008) Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochim Biophys Acta 1779:247–255

    PubMed  CAS  Google Scholar 

  • Sohlberg B, Huang J, Cohen SN (2003) The Streptomyces coelicolor polynucleotide phosphorylase homologue, and not the putative poly(A) polymerase, can polyadenylate RNA. J Bacteriol 185:7273–7278

    PubMed  CAS  Google Scholar 

  • Spickler C, Mackie GA (2000) Action of RNase II and polynucleotide phosphorylase against RNAs containing stem-loops of defined structure. J Bacteriol 182:2422–2427

    PubMed  CAS  Google Scholar 

  • Staals RH, Bronkhorst AW, Schilders G, Slomovic S, Schuster G, Heck AJ, Raijmakers R, Pruijn GJ (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 29:2358–2367

    PubMed  CAS  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci 90:6498–6502

    PubMed  CAS  Google Scholar 

  • Symmons MF, Jones GH, Luisi BF (2000) A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8:1215–1226

    PubMed  CAS  Google Scholar 

  • Thore S, Mauxion F, Seraphin B, Suck D (2003) X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep 4:1150–1155

    PubMed  CAS  Google Scholar 

  • Tobe T, Sasakawa C, Okada N, Honma Y, Yoshikawa M (1992) vacB, a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri. J Bacteriol 174:6359–6367

    PubMed  CAS  Google Scholar 

  • Tomecki R, Kristiansen MS, Lykke-Andersen S, Chlebowski A, Larsen KM, Szczesny RJ, Drazkowska K, Pastula A, Andersen JS, Stepien PP, Dziembowski A, Jensen TH (2010) The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 29:2342–2357

    PubMed  CAS  Google Scholar 

  • Tsao MY, Lin TL, Hsieh PF, Wang JT (2009) The 3'-to-5' exoribonuclease (encoded by HP1248) of Helicobacter pylori regulates motility and apoptosis-inducing genes. J Bacteriol 191:2691–2702

    PubMed  CAS  Google Scholar 

  • Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104:377–386

    PubMed  CAS  Google Scholar 

  • van Hoof A, Parker R (1999) The exosome: a proteasome for RNA? Cell 99:347–350

    PubMed  Google Scholar 

  • van Hoof A, Lennertz P, Parker R (2000) Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J 19:1357–1365

    PubMed  Google Scholar 

  • Vanzo NF, Li YS, Py B, Blum E, Higgins CF, Raynal LC, Krisch HM, Carpousis AJ (1998) Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev 12:2770–2781

    PubMed  CAS  Google Scholar 

  • Vincent HA, Deutscher MP (2006) Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem 281:29769–29775

    PubMed  CAS  Google Scholar 

  • Vincent HA, Deutscher MP (2009a) Insights into how RNase R degrades structured RNA: analysis of the nuclease domain. J Mol Biol 387:570–583

    PubMed  CAS  Google Scholar 

  • Vincent HA, Deutscher MP (2009b) The roles of individual domains of RNase R in substrate binding and exoribonuclease activity. The nuclease domain is sufficient for digestion of structured RNA. J Biol Chem 284:486–494

    PubMed  CAS  Google Scholar 

  • Viswanathan M, Dower KW, Lovett ST (1998) Identification of a potent DNase activity associated with RNase T of Escherichia coli. J Biol Chem 273:35126–35131

    PubMed  CAS  Google Scholar 

  • Wang HW, Wang J, Ding F, Callahan K, Bratkowski J, Butler JS, Nogles E, Ke A (2007) Architecture of the yeast Rrp44-exosome complex suggests routes of RNA recruitment for 3′ end processing. Proc Nat Acad Sci USA 104:16844–16849

    PubMed  CAS  Google Scholar 

  • Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, Fan KC, Hong JS, French SW, McCaffery JM, Lightowlers RN, Morse HC 3rd, Koehler CM, Teitell MA (2010a) PNPase regulates RNA import into mitochondria. Cell 142:456–467

    PubMed  CAS  Google Scholar 

  • Wang H, Morita M, Yang X, Suzuki T, Yang W, Wang J, Ito K, Wang Q, Zhao C, Bartlam M, Yamamoto T, Rao Z (2010b) Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specificity. EMBO J 29:2566–2576

    PubMed  CAS  Google Scholar 

  • Wen T, Oussenko IA, Pellegrini O, Bechhofer DH, Condon C (2005) Ribonuclease PH plays a major role in the exonucleolytic maturation of CCA-containing tRNA precursors in Bacillus subtilis. Nucleic Acids Res 33:3636–3643

    PubMed  CAS  Google Scholar 

  • Wu M, Reuter M, Lilie H, Liu Y, Wahle E, Song H (2005) Structural insight into poly(A) binding and catalytic mechanism of human PARN. EMBO J 24:4082–4093

    PubMed  CAS  Google Scholar 

  • Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB (2005) Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12:1054–1063

    PubMed  CAS  Google Scholar 

  • Yang XC, Torres MP, Marzluff WF, Dominski Z (2009) Three proteins of the U7-specific Sm ring function as the molecular ruler to determine the site of 3'-end processing in mammalian histone pre-mRNA. Mol Cell Biol 29:4045–4056

    PubMed  CAS  Google Scholar 

  • Yehudai-Resheff S, Hirsh M, Schuster G (2001) Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol Cell Biol 21:5408–5416

    PubMed  CAS  Google Scholar 

  • Zangrossi S, Briani F, Ghisotti D, Regonesi ME, Tortora P, Dehò G (2000) Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Mol Microbiol 36:1470–1480

    PubMed  CAS  Google Scholar 

  • Zhang JR, Deutscher MP (1988a) Cloning, characterization, and effects of overexpression of the Escherichia coli rnd gene encoding RNase D. J Bacteriol 170:522–527

    PubMed  CAS  Google Scholar 

  • Zhang JR, Deutscher MP (1988b) Transfer RNA is a substrate for RNase D in vivo. J Biol Chem 263:17909–17912

    PubMed  CAS  Google Scholar 

  • Zhang JR, Deutscher MP (1989) Analysis of the upstream region of the Escherichia coli rnd gene encoding RNase D. Evidence for translational regulation of a putative tRNA processing enzyme. J Biol Chem 264:18228–18233

    PubMed  CAS  Google Scholar 

  • Zhang X, Zhu L, Deutscher MP (1998) Oligoribonuclease is encoded by a highly conserved gene in the 3'-5' exonuclease superfamily. J Bacteriol 180:2779–2781

    PubMed  CAS  Google Scholar 

  • Zhang W, Murphy C, Sieburth LE (2010) Conserved RNase II domain protein functions in cytoplasmic mRNA decay and suppresses Arabidopsis decapping mutant phenotypes. Proc Natl Acad Sci USA 107:15981–15985

    PubMed  CAS  Google Scholar 

  • Zhou Z, Deutscher MP (1997) An essential function for the phosphate-dependent exoribonucleases RNase PH and polynucleotide phosphorylase. J Bacteriol 179:4391–4395

    PubMed  CAS  Google Scholar 

  • Zilhão R, Régnier P, Arraiano CM (1995) The role of endonucleases in the expression of ribonuclease II in Escherichia coli. FEMS Microbiol Lett 130:237–244

    PubMed  Google Scholar 

  • Zilhão R, Cairrão F, Régnier P, Arraiano CM (1996a) PNPase modulates RNase II expression in Escherichia coli: implications for mRNA decay and cell metabolism. Mol Microbiol 20:1033–1042

    PubMed  Google Scholar 

  • Zilhão R, Plumbridge J, Hajnsdorf E, Régnier P, Arraiano CM (1996b) Escherichia coli RNase II: characterization of the promoters involved in the transcription of rnb. Microbiology 142:367–375

    PubMed  Google Scholar 

  • Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017–1026

    PubMed  CAS  Google Scholar 

  • Zuo Y, Deutscher MP (2002a) Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization. J Biol Chem 277:50155–50159

    PubMed  CAS  Google Scholar 

  • Zuo Y, Deutscher MP (2002b) Mechanism of action of RNase T. II. A structural and functional model of the enzyme. J Biol Chem 277:50160–50164

    PubMed  CAS  Google Scholar 

  • Zuo Y, Wang Y, Malhotra A (2005) Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Structure 13:973–984

    PubMed  CAS  Google Scholar 

  • Zuo Y, Vincent HA, Zhang J, Wang Y, Deutscher MP, Malhotra A (2006) Structural basis for processivity and single-strand specificity of RNase II. Mol Cell 24:149–156

    PubMed  CAS  Google Scholar 

  • Zuo Y, Zheng H, Wang Y, Chruszcz M, Cymborowski M, Skarina T, Savchenko A, Malhotra A, Minor W (2007) Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover. Structure 15:417–428

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Miguel Luís for graphical assistance in Figs. 8.2 and 8.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecília M. Arraiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matos, R.G., Pobre, V., Reis, F.P., Malecki, M., Andrade, J.M., Arraiano, C.M. (2011). Structure and Degradation Mechanisms of 3′ to 5′ Exoribonucleases. In: Nicholson, A. (eds) Ribonucleases. Nucleic Acids and Molecular Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21078-5_8

Download citation

Publish with us

Policies and ethics