Skip to main content

Argumentation and Answer Set Programming

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6565))

Abstract

Argumentation and answer set programming are two of the main knowledge representation paradigms that have emerged from logic programming for non-monotonic reasoning. This paper surveys recent work on using answer set programming as a mechanism for computing extensions in argumentation. The paper also indicates some possible directions for future work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence 34(1-3), 197–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amgoud, L., Cayrol, C., Lagasquie-Schiex, M.-C., Livet, P.: On bipolarity in argumentation frameworks. International Journal of Intelligent Systems 23(10), 1062–1093 (2008)

    Article  MATH  Google Scholar 

  3. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argumentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bench-Capon, T., Prakken, H., Sartor, G.: Argumentation in legal reasoning. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 363–382. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Besnard, P., Doutre, S.: Characterization of semantics for argument systems. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR 2004), pp. 183–193. AAAI Press, Menlo Park (2004)

    Google Scholar 

  7. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  8. Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93(1-2), 63–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bondarenko, A., Toni, F., Kowalski, R.: An assumption-based framework for non-monotonic reasoning. In: Nerode, A., Pereira, L. (eds.) Proc. 2nd International Workshop on Logic Programming and Non-monotonic Reasoning, pp. 171–189. MIT Press, Cambridge (1993)

    Google Scholar 

  10. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in asp: Theory and implementation. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Caminada, M.: Semi-stable semantics. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) Proceedings of the Second International Conference on Computational Models of Argument (COMMA 2006). Frontiers in Artificial Intelligence and Applications, vol. 144, pp. 121–130. IOS Press, Amsterdam (2006)

    Google Scholar 

  13. de Almeida, I.C., Alferes, J.J.: An argumentation-based negotiation for distributed extended logic programs. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS (LNAI), vol. 4371, pp. 191–210. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference handling approaches in nonmonotonic reasoning. Computational Intelligence 20(2), 308–334 (2004)

    Article  MathSciNet  Google Scholar 

  15. Devred, C., Doutre, S., Lefèvre, C., Nicolas, P.: Dialectical proofs for constrained argumentation. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G. (eds.) Proceedings of the Third International Conference on Computational Models of Argument (COMMA 2010), vol. 216. IOS Press, Amsterdam (2010)

    Google Scholar 

  16. Dung, P.: On the acceptability of arguments and its fundamental role in non-monotonic reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dung, P., Kowalski, R., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artificial Intelligence, Special Issue on Argumentation in Artificial Intelligence 171(10-15), 642–674 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Dung, P.M.: Negations as hypotheses: An abductive foundation for logic programming. In: Proceedings of 8th International Conference on Logic Programming, ICLP 1991, pp. 3–17 (1991)

    Google Scholar 

  20. Dung, P.M., Thang, P.M.: A unified framework for representation and development of dialectical proof procedures in argumentation. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, pp. 746–751 (2009)

    Google Scholar 

  21. Dunne, P.E.: The computational complexity of ideal semantics. Artificial Intelligence 173(18), 1559–1591 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Egly, U., Gaggl, S.A., Wandl, P., Woltran, S.: ASPARTIX conquers the web. In: Baroni, P., Giacomin, M., Simari, G. (eds.) Proceedings of the Second International Conference on Computational Models of Argument (COMMA 2010). Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2010)

    Google Scholar 

  23. Egly, U., Gaggl, S.A., Woltran, S.: ASPARTIX: Implementing argumentation frameworks using answer-set programming. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 734–738. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. In: Argument and Computation (2010) (accepted for publication)

    Google Scholar 

  25. Eiter, T., Polleres, A.: Towards automated integration of guess and check programs in answer set programming: a meta-interpreter and applications. Theory and Practice of Logic Programming 6(1-2), 23–60 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In: Proceedings of 6th International Conference on Logic Programming, ICLP 1989, pp. 234–254 (1989)

    Google Scholar 

  27. Faber, W., Woltran, S.: Manifold answer-set programs for meta-reasoning. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 115–128. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Fox, J., Glasspool, D., Grecu, D., Modgil, S., South, M., Patkar, V.: Argumentation-based inference and decision making–a medical perspective. IEEE Intelligent Systems 22(6), 34–41 (2007)

    Article  Google Scholar 

  29. Gaggl, S., Woltran, S.: CF2 semantics revisited. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G. (eds.) Proceedings of the Third International Conference on Computational Models of Argument (COMMA 2010), vol. 216, pp. 243–254. IOS Press, Amsterdam (2010)

    Google Scholar 

  30. Garcia, A., Simari, G.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming 4(1-2), 95–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, ch. 7, pp. 285–316. Elsevier, Amsterdam (2007)

    Google Scholar 

  32. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  33. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4), 365–386 (1991)

    Article  MATH  Google Scholar 

  34. Kowalski, R.A., Toni, F.: Abstract argumentation. Journal of Artificial Intelligence and Law, Special Issue on Logical Models of Argumentation 4(3-4), 275–296 (1996)

    Google Scholar 

  35. Lefèvre, C., Nicolas, P.: The first version of a new asp solver: Asperix. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 522–527. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  36. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. McDermott, D.V.: Nonmonotonic logic ii: Nonmonotonic modal theories. J. ACM 29(1), 33–57 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Moore, R.C.: Semantical considerations on nonmonotonic logic. Artif. Intell. 25(1), 75–94 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nieves, J.C., Cortés, U., Osorio, M.: Preferred extensions as stable models. TPLP 8(4), 527–543 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Osorio, M., Nieves, J.C., Gómez-Sebastià, I.: CF2-extensions as answer-set models. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G. (eds.) Proceedings of the Third International Conference on Computational Models of Argument (COMMA 2010), vol. 216. IOS Press, Amsterdam (2010)

    Google Scholar 

  41. Parent, X.: Moral particularism and deontic logic. In: Governatori, G., Sartor, G. (eds.) DEON 2010. LNCS, vol. 6181, pp. 84–97. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  42. Pereira, L.M., Pinto, A.M.: Approved models for normal logic programs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 454–468. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  43. Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36(1), 27–47 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-classical Logics 7, 25–75 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schroeder, M., Schweimeier, R.: Fuzzy argumentation for negotiating agents. In: Proceedings of the First International Joint Conference on Autonomous Agents & Multiagent Systems, AAMAS 2002, pp. 942–943. ACM, New York (2002)

    Google Scholar 

  47. Schweimeier, R., Schroeder, M.: A parameterised hierarchy of argumentation semantics for extended logic programming and its application to the well-founded semantics. Theory and Practice of Logic Programming 5(1-2), 207–242 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Thimm, M., Kern-Isberner, G.: On the relationship of defeasible argumentation and answer set programming. In: Besnard, P., Doutre, S., Hunter, A. (eds.) Proceedings of the Second International Conference on Computational Models of Argument (COMMA 2008). Frontiers in Artificial Intelligence and Applications, vol. 172, pp. 393–404. IOS Press, Amsterdam (2008)

    Google Scholar 

  49. Toni, F.: Assumption-based argumentation for closed and consistent defeasible reasoning. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 390–402. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  50. Toni, F.: Assumption-based argumentation for epistemic and practical reasoning. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 185–202. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  51. Toni, F.: Assumption-based argumentation for selection and composition of services. In: Sadri, F., Satoh, K. (eds.) CLIMA VIII 2007. LNCS (LNAI), vol. 5056, pp. 231–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  52. Van Gelder, A., Ross, K., Schlifp, J.: The well-founded semantics for general logic programs. Journal of ACM 38(3), 620–650 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wakaki, T., Nitta, K.: Computing argumentation semantics in answer set programming. In: Hattori, H., Kawamura, T., Idé, T., Yokoo, M., Murakami, Y. (eds.) JSAI 2008. LNCS, vol. 5447, pp. 254–269. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  54. Wakaki, T., Nitta, K., Sawamura, H.: Computing abductive argumentation in answer set programming. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS, vol. 6057, pp. 195–215. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toni, F., Sergot, M. (2011). Argumentation and Answer Set Programming. In: Balduccini, M., Son, T.C. (eds) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in Computer Science(), vol 6565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20832-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20832-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20831-7

  • Online ISBN: 978-3-642-20832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics