Skip to main content

Genomic Perspectives on the Long-Term Absence of Sexual Reproduction in Animals

  • Chapter
  • First Online:
Book cover Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution

Abstract

Sexual reproduction, the exchange and recombination of genetic material between different individuals, is commonly viewed as one of the most important sources of genomic diversity in animals. This genomic diversity is subject to natural selection and, consequently, the fittest genomes relative to the environment survive and persist. According to this vision, the absence of sexual reproduction in animals is believed to inexorably lead to an evolutionary dead end as asexual animals become unable to adapt to changing environmental conditions. Yet, several animal lineages suspected to have been reproducing exclusively asexually for millions of years actually survived environmental changes and are not necessarily restricted to specialized ecological niches. The sources of genomic variations that have contributed to the evolutionary success and persistence of these lineages is currently unknown. Here we will review and discuss these known cases of long-term survival of asexually reproducing animal lineages with a focus on recent genomic findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Gouzy J et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 8:909–915

    Article  Google Scholar 

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 26:14473–14477

    Article  Google Scholar 

  • Arkhipova I, Meselson M (2005a) Deleterious transposable elements and the extinction of asexuals. Bioessays 1:76–85

    Article  Google Scholar 

  • Arkhipova IR, Meselson M (2005b) Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci USA 33:11781–11786

    Article  Google Scholar 

  • Barraclough TG, Fontaneto D et al (2007) Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Mol Biol Evol 9:1952–1962

    Article  Google Scholar 

  • Bird DM, Williamson VM et al (2009) The genomes of root-knot nematodes. Annu Rev Phytopathol 47:333–351

    Article  PubMed  CAS  Google Scholar 

  • Birky CW Jr (1996) Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 1:427–437

    Google Scholar 

  • Birky CW, Wolf C et al (2005) Speciation and selection without sex. Hydrobiologia 1:29–45

    Article  Google Scholar 

  • Bishop DK, Williamson MS et al (1987) The role of heteroduplex correction in gene conversion in Saccharomyces cerevisiae. Nature 6128:362–364

    Article  Google Scholar 

  • Burt A (2000) Sex, recombination, and the efficacy of selection – was Weismann right? Evolution 2:337–351

    Google Scholar 

  • Butlin R (2002) The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet 4:311–317

    Article  Google Scholar 

  • Castagnone-Sereno P (2006) Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity 4:282–289

    Article  Google Scholar 

  • Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarol 1:1–25

    Article  Google Scholar 

  • Danchin EG, Rosso MN et al (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci USA 41:17651–17656

    Article  Google Scholar 

  • De Ley IT, De Ley P et al (2002) Phylogenetic analyses of Meloidogyne small subunit rDNA. J Nematol 4:319–327

    Google Scholar 

  • Dieterich C, Clifton SW et al (2008) The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet 10:1193–1198

    Article  Google Scholar 

  • Domes K, Norton RA et al (2007) Reevolution of sexuality breaks Dollo’s law. Proc Natl Acad Sci USA 17:7139–7144

    Article  Google Scholar 

  • Doncaster CP, Pound GE et al (2000) The ecological cost of sex. Nature 6775:281–285

    Article  Google Scholar 

  • Dunn CW, Hejnol A et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 7188:745–749

    Article  Google Scholar 

  • Esbenshade PR, Triantaphyllou AC (1987) Enzymatic relationships and evolution in the genus Meloidogyne (Nematoda: Tylenchida). J Nematol 1:8–18

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon, Oxford

    Google Scholar 

  • Fontaneto D, Ficetola GF et al (2006) Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals? Glob Ecol Biogeogr 2:153–162

    Article  Google Scholar 

  • Fontaneto D, Herniou EA et al (2007) Independently evolving species in asexual bdelloid rotifers. PLoS Biol 4:e87

    Article  Google Scholar 

  • Fontaneto D, Barraclough TG et al (2008) Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Mol Ecol 13:3136–3146

    Article  Google Scholar 

  • Ghedin E, Wang S et al (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 5845:1756–1760

    Article  Google Scholar 

  • Gilbert JJ (1974) Dormancy in rotifers. Trans Am Microsc Soc 4:490–513

    Article  Google Scholar 

  • Gladyshev EA, Meselson M et al (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 5880:1210–1213

    Article  Google Scholar 

  • Hammer M, Wallwork JA (1979) A review of the world distribution of oribatid mites (Acari: Cryptostigmata) in relation to continental drift. Biol Skr Dan Vid Selsk 22:1–31

    Google Scholar 

  • Heethoff M, Domes K et al (2007) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). J Evol Biol 1:392–402

    Article  Google Scholar 

  • Heethoff M, Norton RA et al (2009) Parthenogenesis in oribatid mites (Acari, Oribatida): evolution without sex. In: Schön I, Martens K, Dijk P (eds) Lost sex. Springer, Dordrecht, pp 241–257

    Chapter  Google Scholar 

  • Hoffmann AA, Reynolds KT et al (2008) A high incidence of parthenogenesis in agricultural pests. Proc Biol Sci 1650:2473–2481

    Article  Google Scholar 

  • Holterman M, Karssen G et al (2009) Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology 3:227–235

    Article  Google Scholar 

  • Hsu WS (1956a) Oogenesis in the Bdelloidea rotifer, Philodina roseola. Cellule 57:283–296

    Google Scholar 

  • Hsu WS (1956b) Oogenesis in Habrotrocha tridens (Milne). Biol Bull 3:364–374

    Article  Google Scholar 

  • Hugall A, Stanton J et al (1997) Evolution of the AT-rich mitochondrial DNA of the root knot nematode, Meloidogyne hapla. Mol Biol Evol 1:40–48

    Article  Google Scholar 

  • Hugall A, Stanton J et al (1999) Reticulate evolution and the origins of ribosomal internal transcribed spacer diversity in apomictic Meloidogyne. Mol Biol Evol 2:157–164

    Article  Google Scholar 

  • Hur JH, Van Doninck K et al (2009) Degenerate tetraploidy was established before bdelloid rotifer families diverged. Mol Biol Evol 2:375–383

    Article  Google Scholar 

  • Jaffe DB, Butler J et al (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 1:91–96

    Article  Google Scholar 

  • Janko K, Drozd P et al (2008) Clonal turnover versus clonal decay: a null model for observed patterns of asexual longevity, diversity and distribution. Evolution 5:1264–1270

    Article  Google Scholar 

  • Kim JH, Waterman MS et al (2007) Diploid genome reconstruction of Ciona intestinalis and comparative analysis with Ciona savignyi. Genome Res 7:1101–1110

    Article  Google Scholar 

  • Kirkpatrick M, Jenkins CD (1989) Genetic segregation and the maintenance of sexual reproduction. Nature 6222:300–301

    Article  Google Scholar 

  • Leasi F, Fontaneto D et al (2010) Phylogenetic constraints in the muscular system of rotifer males: investigation on the musculature of males versus females of Brachionus manjavacas and Epiphanes senta (Rotifera, Monogononta). J Zool 2:109–119

    Google Scholar 

  • Leroy S, Duperray C et al (2003) Flow cytometry for parasite nematode genome size measurement. Mol Biochem Parasitol 1:91–93

    Article  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 13:1658–1659

    Article  Google Scholar 

  • Lunt DH (2008) Genetic tests of ancient asexuality in root knot nematodes reveal recent hybrid origins. BMC Evol Biol 8:194

    Article  PubMed  Google Scholar 

  • Mandegar MA, Otto SP (2007) Mitotic recombination counteracts the benefits of genetic segregation. Proc Biol Sci 1615:1301–1307

    Article  Google Scholar 

  • Margulies M, Egholm M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 7057:376–380

    Google Scholar 

  • Mark Welch DB, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 5469:1211–1215

    Article  Google Scholar 

  • Mark Welch DB, Meselson MS (2001) Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proc Natl Acad Sci USA 12:6720–6724

    Article  Google Scholar 

  • Mark Welch DB, Cummings MP et al (2004) Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families. Proc Natl Acad Sci USA 6:1622–1625

    Article  Google Scholar 

  • Mark Welch DB, Mark Welch JL et al (2008) Evidence for degenerate tetraploidy in bdelloid rotifers. Proc Natl Acad Sci USA 13:5145–5149

    Article  Google Scholar 

  • Mark Welch DB, Ricci C et al (2009) Bdelloid rotifers: progress in understanding the success of an evolutionary scandal. In: Schön I, Martens K, Dijk P (eds) Lost sex. Springer, Dordrecht, pp 259–279

    Chapter  Google Scholar 

  • Martens K, Horne DJ et al (1998) Age and diversity of non-marine ostracods. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden, pp 37–55

    Google Scholar 

  • Martens K, Rossetti G et al (2003) How ancient are ancient asexuals? Proc Biol Sci 1516:723–729

    Article  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 3:633–637

    Google Scholar 

  • Maynard Smith J (1986) Contemplating life without sex. Nature 6095:300–301

    Article  Google Scholar 

  • Muller HJ (1932) Some genetic aspects of sex. Am Nat 703:118–138

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9

    PubMed  CAS  Google Scholar 

  • Neiman M, Meirmans S et al (2009) What can asexual lineage age tell us about the maintenance of sex? Ann NY Acad Sci 1168:185–200

    Article  PubMed  Google Scholar 

  • Omilian AR, Cristescu ME et al (2006) Ameiotic recombination in asexual lineages of Daphnia. Proc Natl Acad Sci USA 49:18638–18643

    Article  Google Scholar 

  • Opperman CH, Bird DM et al (2008) Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 39:14802–14807

    Article  Google Scholar 

  • Palmer SC, Norton RA (1991) Taxonomic, geographic and seasonal distribution of thelytokous parthenogenesis in the Desmonomata (Acari: Oribatida). Exp Appl Acarol 1:67–81

    Article  Google Scholar 

  • Regier JC, Shultz JW et al (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 7284:1079–1083

    Article  Google Scholar 

  • Resnick MA (1976) The repair of double-strand breaks in DNA: a model involving recombination. J Theor Biol 1:97–106

    Article  Google Scholar 

  • Ricci C (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia 387/388:321–326

    Article  Google Scholar 

  • Sasser JN, Carter CC (1985) Overview of the international Meloidogyne project 1975–1984. In: Sasser JN, Carter CC (eds) An advance treatise on Meloidogyne, I: biology and control. North Carolina State University Graphics, Raleigh, pp 19–24

    Google Scholar 

  • Schaefer I, Domes K et al (2006) No evidence for the ‘Meselson effect’ in parthenogenetic oribatid mites (Oribatida, Acari). J Evol Biol 1:184–193

    Article  Google Scholar 

  • Schön I, Arkhipova IR (2006) Two families of non-LTR retrotransposons, Syrinx and Daphne, from the Darwinulid ostracod, Darwinula stevensoni. Gene 2:296–307

    Article  Google Scholar 

  • Schön I, Martens K (2003) No slave to sex. Proc R Soc Lond B Biol Sci 1517:827–833

    Article  Google Scholar 

  • Schön I, Butlin RK et al (1998) Slow molecular evolution in an ancient asexual ostracod. Proc R Soc Lond B Biol Sci 1392:235–242

    Article  Google Scholar 

  • Schön I, Rossetti G et al (2009) Darwinulid ostracods: ancient asexual scandals or scandalous gossip? In: Schön I, Martens K, van Dijk P (eds) Lost sex. The Evolutionary Biology of Parthenogenesis Springer, Dordrecht, Heidelberg, London, New York, pp 217–240

    Chapter  Google Scholar 

  • Schurko AM, Logsdon JM Jr (2008) Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. Bioessays 6:579–589

    Article  Google Scholar 

  • Segers H (2007) Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564:1–104

    Google Scholar 

  • Segers H (2008) Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 1:49–59

    Article  Google Scholar 

  • Small K, Brudno M et al (2007) A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol 3:R41

    Article  Google Scholar 

  • Smith RJ, Kamiya T et al (2006) Living males of the ‘ancient asexual’ Darwinulidae (Ostracoda: Crustacea). Proc Biol Sci 1593:1569–1578

    Article  Google Scholar 

  • Stein LD, Bao Z et al (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 2:E45

    Google Scholar 

  • Triantaphyllou AC (1985) Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In: Sasser JN, Carter CC (eds) An advance treatise on Meloidogyne, 1. North Carolina State University Graphics, Raleigh, pp 113–126

    Google Scholar 

  • Van der Beek JG, Los JA et al (1998) Cytology of parthenogenesis of five Meloidogyne species. Fundam Appl Nematol 4:393–399

    Google Scholar 

  • Van Doninck K, Schön I et al (2002) A general purpose genotype in an ancient asexual. Oecologia 132(2):205–212

    Article  Google Scholar 

  • Van Doninck K, Schön I et al (2003) Ecological strategies in the ancient asexual animal group Darwinulidae (Crustacea, Ostracoda). Freshw Biol 8:1285–1294

    Article  Google Scholar 

  • Van Doninck K, Mandigo ML et al (2009) Phylogenomics of unusual histone H2A variants in bdelloid rotifers. PLoS Genet 3:e1000401

    Article  Google Scholar 

  • Velázquez-Rojas CA, Santos-Medrano GE et al (2002) Sexual reproductive biology of Platyias quadricornis (Rotifera: Monogononta). Int Rev Hydrobiol 1:97–105

    Article  Google Scholar 

  • Vinson JP, Jaffe DB et al (2005) Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Genome Res 8:1127–1135

    Article  Google Scholar 

  • Vrijenhoek RC, Parker ED Jr (2009) Geographical parthenogenesis: general purpose genotypes and frozen niche variation. In: Schön I, Martens K, van Dijk P (eds) Lost sex. The Evolutionary Biology of Parthenogenesis Springer, Dordrecht, Heidelberg, London, New York, pp 99–131

    Chapter  Google Scholar 

  • Waggoner BM, Poinar GO (1993) Fossil habrotrochid rotifers in Dominican amber. Experientia 4:354–357

    Article  Google Scholar 

  • Weismann A (1886) Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Verlag von Gustav Fischer, Jena

    Book  Google Scholar 

  • Wilson CG, Sherman PW (2010) Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science 5965:574–576

    Article  Google Scholar 

  • Wolfe K (2000) Robustness – it’s not where you think it is. Nat Genet 1:3–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne G. J. Danchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Danchin, E.G.J., Flot, JF., Perfus-Barbeoch, L., Van Doninck, K. (2011). Genomic Perspectives on the Long-Term Absence of Sexual Reproduction in Animals. In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20763-1_13

Download citation

Publish with us

Policies and ethics