Skip to main content

Using Quick Decision Tree Algorithm to Find Better RBF Networks

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6591))

Included in the following conference series:

Abstract

It is known that generated knowledge models for data mining tasks are dependent upon supplied data sets, so supplying good data sets for target data mining algorithms is important for the success of data mining. Therefore, in order to find better RBF networks of k-means clustering efficiently, we refer to the number of errors that are from decision trees, and use the information to improve training data sets for RBF networks and we also refer to terminal nodes to initialize the k value. Experiments with real world data sets showed good results.

This work was supported by Dongseo University, "Dongseo Frontier Project" Research Fund of 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley, Reading (2006)

    Google Scholar 

  2. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  3. Heaton, J.: Introduction to Neural Networks for C#, 2nd edn. Heaton Research Inc. (2008)

    Google Scholar 

  4. Lippmann, R.P.: An Introduction to Computing with Neural Nets. IEEE ASSP Magazine 3(4), 4–22 (1987)

    Article  Google Scholar 

  5. Howlett, R.J., Jain, L.C.: Radial Basis Function Networks I: recent developments in theory and applications. Physica-Verlag, Heidelberg (2001)

    Google Scholar 

  6. Russel, S., Novig, P.: Artificial Intelligence: a Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  7. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., San Francisco (1993)

    Google Scholar 

  8. Larose, D.T.: Data Mining Methods and Models. Wiley-Interscience, Hoboken (2006)

    MATH  Google Scholar 

  9. Shenouda, E.A.M.A.: A Quantitative Comparison of Different MLP Activation Functions in Classification. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 849–857. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Orr, M.J.L.: Introduction to Radial Basis Function Networks, http://www.anc.ed.ac.uk/~mjo/intro.ps

  11. Kubat, M.: Decision Trees Can Initialize Radial-Basis Function Networks. IEEE Transactions on Neural Networks 9(5), 813–821 (1998)

    Article  Google Scholar 

  12. Schwenker, F., Kestler, H.A., Palm, G.: Three learning phases for radial-basis-function networks. Neural Networks 14, 439–458 (2001)

    Article  MATH  Google Scholar 

  13. Fukunaga, K., Hayes, R.R.: Effects of Sample Size in Classifier Design. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(8), 873–885 (1989)

    Article  Google Scholar 

  14. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16, 341–378 (2002)

    MATH  Google Scholar 

  15. Mazuro, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A., Tourassi, G.D.: Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural Networks 21(2-3), 427–436 (2008)

    Article  Google Scholar 

  16. Sug, H.: An Objective Method to Find Better RBF Networks in Classification. In: Proceedings of the 5th International Conference on Computer Sciences and Convergence Information Technology, vol. 1, pp. 373–376 (2010)

    Google Scholar 

  17. Suncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Sciences, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  18. Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)

    Google Scholar 

  19. Statlog (Landsat Satellite) Data Set, http://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29

  20. Witten, I.H., Frank, E.: Data Mining, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sug, H. (2011). Using Quick Decision Tree Algorithm to Find Better RBF Networks. In: Nguyen, N.T., Kim, CG., Janiak, A. (eds) Intelligent Information and Database Systems. ACIIDS 2011. Lecture Notes in Computer Science(), vol 6591. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20039-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20039-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20038-0

  • Online ISBN: 978-3-642-20039-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics