Skip to main content

Hygienically Relevant Microorganisms in Biofilms of Man-Made Water Systems

  • Chapter
  • First Online:
Biofilm Highlights

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 5))

Abstract

In recent years, it has become evident that biofilms in drinking water distribution networks and other man-made water systems can become transient or long-term habitats for hygienically relevant microorganisms. Important categories of these organisms include faecal indicator bacteria (e.g. Escherichia coli), obligate bacterial pathogens of faecal origin (e.g. Campylobacter spp.), opportunistic bacteria of environmental origin (e.g. Legionella spp., Pseudomonas aeruginosa), enteric viruses and parasitic protozoa (e.g. Cryptosporidium parvum). These organisms can attach to preexisting biofilms, where they become integrated and survive for days to weeks or even longer, depending on the biology and ecology of the organism and the environmental conditions. There are indications that at least part of the biofilm populations of pathogenic bacteria persist in a viable but non-culturable state. Thus, biofilms in man-made water systems can function as an environmental reservoir for pathogenic microorganisms and present a potential source of water contamination, resulting in a health risk for humans. This review outlines the current knowledge of the integration and fate of hygienically relevant microorganisms in biofilms of man-made water systems, with consideration of the physicochemical and biological factors that govern these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allegra S, Berger F, Berthelot P, Grattard F, Pzzetto B, Riffard S (2008) Use of cytometry to monitor Legionella viability. Appl Environ Microbiol 74:7813–7816

    Article  PubMed  CAS  Google Scholar 

  • Anaissie EJ, Costa SF (2001) Nosocomial aspergillosis is waterborne. Clin Infect Dis 33:1546–1548

    Article  PubMed  CAS  Google Scholar 

  • Anaissie EJ, Penzak SR, Dignani MC (2002) The hospital water supply as a source of nosocomial infections: a plea for action. Arch Intern Med 162:1483–1492

    Article  PubMed  Google Scholar 

  • Anaissie EJ, Stratton SL, Dignani MC, Lee C, Summerbell RC, Rex JH, Monson TP, Walsh TJ (2003) Pathogenic molds (including Aspergillus species) in hospital water distribution systems: a 3-year prospective study and clinical implications for patients with hematologic malignancies. Blood 101:2542–2546

    Article  PubMed  CAS  Google Scholar 

  • Angenent LT, Kelley ST, Amand A St, Pace NR, Hernandez MT (2005) Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proc Nat Acad Sci USA 102:4860–4865

    Article  CAS  Google Scholar 

  • Angles ML, Chandy JP, Cox PT, Fisher IH, Warnecke MR (2007) Implications of biofilm-associated waterborne Cryptosporidium oocysts for the water industry. Trends Parasitol 23:352–356

    Article  PubMed  CAS  Google Scholar 

  • Armon R, Starosvetzky J, Arbel T, Green M (1997) Survival of Legionella pneumophila and Salmonella typhimurium in biofilm systems. Water Sci Technol 35(11–12):293–300

    CAS  Google Scholar 

  • Arvanitidou M, Kanellou K, Constantinides TC, Katsouyannopoulos V (1999) The occurrence of fungi in hospital and community potable waters. Lett Appl Microbiol 29:81–84

    Article  Google Scholar 

  • Assanta MA, Roy D, Montpetit D (1998) Adhesion of Aeromonas hydrophila to water distribution system pipes after different contact times. J Food Prot 61:1321–1329

    PubMed  CAS  Google Scholar 

  • Azevedo NF, Vieira MJ, Keevil CW (2003) Establishment of a continuous model system to study Helicobacter pylori survival in potable water systems. Water Sci Technol 47(5):155–160

    PubMed  CAS  Google Scholar 

  • Azevedo NF, Pacheco AP, Keevil CW, Vieira MJ (2006a) Adhesion of water stressed Helicobacter pylori to abiotic surfaces. J Appl Microbiol 101:718–724

    Article  PubMed  CAS  Google Scholar 

  • Azevedo NF, Pinto AR, Reis NM, Vieira MJ, Keevil CW (2006b) Shear stress, temperature, and inoculation concentration influence the adhesion of water-stressed Helicobacter pylori to stainless steel 304 and polypropylene. Appl Environ Microbiol 72:2936–2941

    Article  PubMed  CAS  Google Scholar 

  • Bachmann RT, Edyvean RGJ (2005) Biofouling: an historic and contemporary review of its causes, consequences and control in drinking water distribution systems. Biofouling 2:197–227

    Google Scholar 

  • Bagh LK, Albrechtsen H-J, Arvin E, Ovesen K (2004) Distribution of bacteria in a domestic hot water system in a Danish apartment building. Water Res 38:225–235

    Article  PubMed  CAS  Google Scholar 

  • Banning N, Toze S, Mee BJ (2003) Persistence of biofilm-associated Escherichia coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system. Microbiology 149:47–55

    Article  PubMed  CAS  Google Scholar 

  • Barbeau J, Gauthier C, Payment P (1998) Biofilms, infectious agents, and dental unit waterlines: a review. Can J Microbiol 44:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Batté M, Appenzeller BMR, Grandjean D, Fass S, Gauthier V, Jorand F, Mathieu L, Boualam M, Saby S, Block JC (2003) Biofilms in drinking water distribution systems. Rev Environ Sci Bio Tech 2:147–168

    Article  Google Scholar 

  • Batté M, Féliers C, Servais P, Gauthier V, Joret J-C, Block J-C (2006) Coliforms and other microbial indicators occurrence in water and biofilm in full-scale distribution systems. Water Sci Technol 54(3):41–48

    Article  PubMed  Google Scholar 

  • Baumann WJ, Nocker A, Jones WL, Camper AK (2009) Retention of a model pathogen in a porous media biofilm. Biofouling 25:229–240

    Article  CAS  Google Scholar 

  • Berk SG, Gunderson JH, Newsome AL, Farone AL, Hayes BJ, Redding KS, Uddin N, Williams EL, Johnson RA, Farsian M, Reid A, Skimmyhorn J, Farone MB (2006) Occurrence of infected amoebae in cooling towers compared with natural aquatic environments: implications for emerging pathogens. Environ Sci Technol 40:7440–7444

    Article  PubMed  CAS  Google Scholar 

  • Block JC, Haudidier K, Paquin JL, Miazga J, Levi Y (1993) Biofilm accumulation in drinking water distribution systems. Biofouling 6:333–343

    Article  CAS  Google Scholar 

  • Bomo A-M, Storey MV, Ashbolt NJ (2004) Detection, integration and persistence of aeromonads in water distribution pipe biofilms. J Water Health 2:83–96

    PubMed  CAS  Google Scholar 

  • Bonadonna L, Briancesco R, Libera SD, Lacchetti I, Paradiso R, Semproni M (2009) Microbial characterization of water and biofilms in drinking water distribution systems at sport facilities. Cent Eur J Public Health 17:99–102

    PubMed  Google Scholar 

  • Botzenhart K, Döring G (1993) Ecology and epidemiology of Pseudomonas aeruginosa. In: Campa M, Bendinelli M, Friedman H (eds) Pseudomonas aeruginosa as an opportunistic pathogen. Plenum, New York, pp 1–18

    Chapter  Google Scholar 

  • Botzenhart K, Hock C (2003) Auftreten von obligat und fakultativ pathogenen Organismen in Trinkwasser-Biofilmen: Viren. In: Flemming H-C (ed) Erfassung des Wachstums und des Kontaminationspotentials von Biofilmen in der Verteilung von Trinkwasser. GmbH, Mülheim an der Ruhr, pp 160–184

    Google Scholar 

  • Bragança SM, Azevedo NF, Simões LC, Vieira MJ, Keevil CW (2005) Detection of H. pylori formed in a real drinking water distribution system using peptide nucleic acid fluorescence in situ hybridization. In: McBain A, Allison D, Pratten J, Spratt D, Upton M, Verran J (eds) Biofilms: persistence and ubiquitity. Biofilm Club, Manchester, pp 231–239

    Google Scholar 

  • Bressler D, Balzer M, Dannehl A, Flemming H-C, Wingender J (2009) Persistence of Pseudomonas aeruginosa in drinking-water biofilms on elastomeric material. Water Sci Technol Water Supp 9:81–87

    Article  CAS  Google Scholar 

  • Bridier A, Dubois-Brissonet F, Boubetra A, Thomas V, Briandet R (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Meth 82:64–70

    Article  CAS  Google Scholar 

  • Brown MRW, Barker J (1999) Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol 7:46–59

    Article  PubMed  CAS  Google Scholar 

  • Buswell CM, Herlihy YM, Lawrence LM, McGuiggan JTM, Marsh PD, Keevil CW, Leach SA (1998) Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl Environ Microbiol 64:733–741

    PubMed  CAS  Google Scholar 

  • Camper AK, LeChevallier MW, Broadway SC, McFeters GA (1985) Growth and persistence of pathogens in granular activated carbon filters. Appl Environ Microbiol 50:1378–1382

    PubMed  CAS  Google Scholar 

  • Camper AK, Jones WL, Hayes JT (1996) Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms. Appl Environ Microbiol 62:4014–4018

    PubMed  CAS  Google Scholar 

  • Camper AK, Warnecke M, Jones WL, McFeters GA (1998) Pathogens in model distribution system biofilms. AWWA Research Foundation and American Water Works Association, Denver

    Google Scholar 

  • Carr JH, Anderson RL, Favero MS (1996) Comparison of chemical dehydration and critical point drying for the stabilization and visualization of aging biofilm present on interior surfaces of PVC distribution pipe. J Appl Bacteriol 80:225–232

    Article  PubMed  CAS  Google Scholar 

  • Carter G, Wu M, Drummond DC, Bermudez LE (2003) Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J Med Microbiol 52:747–752

    Article  PubMed  CAS  Google Scholar 

  • Caubet R, Pedarros-Caubet F, Quataert Y, Lescure A, Moreau JM, Ellison WJ (2006) Assessing the contamination potential of freshly extracted Escherichia coli biofilm cells by impedancemetry. Microb Ecol 52:239–243

    Article  PubMed  CAS  Google Scholar 

  • Chauret C, Volk C, Creason R, Jarosh J, Robinson J, Warnes C (2001) Detection of Aeromonas hydrophila in a drinking-water distribution system: a field and pilot study. Can J Microbiol 47:782–786

    PubMed  CAS  Google Scholar 

  • Cirillo JD, Falkow S, Tompkins LS (1994) Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 62:3254–3261

    PubMed  CAS  Google Scholar 

  • Cirillo JD, Falkow S, Tompkins LS, Bermudez LE (1997) Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun 65:3759–3767

    PubMed  CAS  Google Scholar 

  • Cole SP, Harwood J, Lee R, She R, Guiney DG (2004) Characterization of monospecies biofilm formation by Helicobacter pylori. J Bacteriol 186:3124–3132

    Article  PubMed  CAS  Google Scholar 

  • Corsaro D, Pages GS, Catalan V, Loret J-F, Greub G (2010) Biodiversity of amoebae and amoeba-associated bacteria in water. Int J Hyg Environ Health 213:158–166

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  PubMed  CAS  Google Scholar 

  • Dailloux M, Albert M, Laurain C, Andolfatto S, Lozniewski A, Hartemann P, Mathieu L (2003) Mycobacterium xenopi and drinking water biofilms. Appl Environ Microbiol 69:6946–6948

    Article  PubMed  CAS  Google Scholar 

  • Declerck P, Behets J, van Hoef V, Ollevier F (2007a) Detection of Legionella spp. and some of their amoeba host in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41:3159–3167

    Article  PubMed  CAS  Google Scholar 

  • Declerck P, Behets J, van Hoef V, Ollevier F (2007b) Replication of Legionella pneumophila in floating biofilms. Curr Microbiol 55:435–440

    Article  PubMed  CAS  Google Scholar 

  • Doggett MS (2000) Characterization of fungal biofilms within a municipal water distribution system. Appl Environ Microbiol 66:1249–1251

    Article  PubMed  CAS  Google Scholar 

  • Doleans A, Aurell H, Reyrolle M, Lina G, Freney J, Vandenesch F, Etienne J, Jarraud S (2004) Clinical and environmental distributions of Legionella strains in France are different. J Clin Microbiol 42:458–460

    Article  PubMed  Google Scholar 

  • Donlan RM, Forster T, Murga R, Brown E, Lucas C, Carpenter J, Fields B (2005) Legionella pneumophila associated with the protozoan Hartmannella vermiformis in a model multi-species biofilm has reduced susceptibility to disinfectants. Biofouling 21:1–7

    Article  PubMed  CAS  Google Scholar 

  • Dott W, Schoenen D (1985) Qualitative und quantitative Bestimmung von Bakterienpopulationen aus aquatischen Biotopen. 7. Mitteilung: Entwicklung der Aufwuchsflora auf Werkstoffen im Trinkwasser. Zbl Bakt Hyg I Abt Orig B 180:436–447

    CAS  Google Scholar 

  • Dusserre E, Ginevra C, Hallier-Soulier S, Vandenesch F, Festoc G, Etienne J, Jarraud S, Molmeret M (2008) A PCR-based method for monitoring Legionella pneumophila in water samples detects viable but noncultivable legionellae that can recover their cultivability. Appl Environ Microbiol 74:4817–4824

    Article  PubMed  CAS  Google Scholar 

  • Eboigbodin KE, Seth A, Biggs CA (2008) A review of biofilms in domestic plumbing. J Am Water Works Assoc 100(10):131–138

    CAS  Google Scholar 

  • Emtiazi F, Schwartz T, Marten SM, Krolla-Sidenstein P, Obst U (2004) Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Res 38:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Exner M, Rechenburg A (2003) Auftreten von obligat und fakultativ pathogenen Organismen in Trinkwasser-Biofilmen: Helicobacter pylori. In: Flemming H-C (ed) Erfassung des Wachstums und des Kontaminationspotentials von Biofilmen in der Verteilung von Trinkwasser. IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH, Mülheim an der Ruhr, pp 144–159

    Google Scholar 

  • Exner M, Kramer A, Lajoie L, Gebel J, Engelhart S, Hartemann P (2005) Prevention and control of health care-associated waterborne infections in health care facilities. Am J Infect Control 33:S26–S40

    Article  PubMed  CAS  Google Scholar 

  • Falkinham JO III (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107:356–367

    Article  PubMed  CAS  Google Scholar 

  • Falkinham JO III, Norton CD, LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67:1225–1231

    Article  PubMed  CAS  Google Scholar 

  • Falkinham JO III, Iseman MD, de Haas P, van Solingen D (2008) Mycobacterium avium in a shower linked to pulmonary disease. J Water Health 6:209–213

    PubMed  Google Scholar 

  • Fass S, Dincher ML, Reasoner DJ, Gatel D, Block J-C (1996) Fate of Escherichia coli experimentally injected in a drinking water distribution pilot system. Water Res 30:2215–2221

    Article  CAS  Google Scholar 

  • Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR (2009) Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci USA 106:16393–16399

    Article  PubMed  CAS  Google Scholar 

  • Flemming H-C (2002) Biofouling in water systems: cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  PubMed  CAS  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    PubMed  CAS  Google Scholar 

  • Flemming H-C, Percival SI, Walker JT (2002) Contamination potential of biofilms in water distribution systems. Water Sci Technol Water Supp 2(1):271–280

    CAS  Google Scholar 

  • Fox KR, Reasoner DJ (2006) Water quality in source water, treatment, and distribution systems. In: Christensen M (ed) Waterborne pathogens. AWWA Manual M48, 2nd edn. American Water Works Association, Denver, pp 21–34

    Google Scholar 

  • Gatel D, Servais P, Block JC, Bonne P, Cavard J (2000) Microbiological water quality management in the Paris suburbs distribution system. J Water Suppl Res Tech Aqua 49:231–241

    CAS  Google Scholar 

  • Gauthier F, Archibald F (2001) The ecology of “fecal indicator” bacteria commonly found in pulp and paper mill water systems. Water Res 35:2207–2218

    Article  PubMed  CAS  Google Scholar 

  • Gião MS, Wilks SA, Azevedo NF, Vieira MJ, Keevil CW (2009) Comparison between standard cultures and peptide nucleic acid 16S rRNA hybridization quantification to study the influence of physico-chemical parameters on Legionella pneumophila survival in drinking water biofilms. Biofouling 25:335–343

    Article  PubMed  CAS  Google Scholar 

  • Guerrieri E, Bondi M, Sabia C, de Niederhäusern S, Borella P, Messi P (2008) Effect of bacterial interference on biofilm development by Legionella pneumophila. Curr Microbiol 57:532–536

    Article  PubMed  CAS  Google Scholar 

  • Hageskal G, Knutsen AK, Gaustad P, de Hoog GS, Skaar I (2006) Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol 72:7586–7593

    Article  PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Micobiol 2:95–108

    Article  CAS  Google Scholar 

  • Harris A (1999) Problems associated with biofilms in cooling tower systems. In: Keevil CW, Godfree A, Holt D, Dow C (eds) Biofilms in the aquatic environment. The Royal Society of Chemistry, Cambridge, UK, pp 139–144

    Google Scholar 

  • Helmi K, Skraber S, Gantzer C, Willame R, Hoffmann L, Cauchie H-M (2008) Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages ΦX174 and MS2 with a drinking water biofilm and a wastewater biofilm. Appl Environ Microbiol 74:2079–2088

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann R, Michel R (2003) Auftreten von obligat und fakultativ pathogenen Organismen in Trinkwasser-Biofilmen: Freilebende Amöben (FLA). In: Flemming H-C (ed) Erfassung des Wachstums und des Kontaminationspotentials von Biofilmen in der Verteilung von Trinkwasser. IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH, Mülheim an der Ruhr, pp 216–232

    Google Scholar 

  • Holmes P, Nicolls LM (1995) Aeromonads in drinking-water supplies: their occurrence and significance. J CIWEM 9:464–469

    CAS  Google Scholar 

  • Howe AD, Forster S, Morton S, Marshall R, Osborn KS, Wright P, Hunter PR (2002) Cryptosporidium oocysts in a water supply associated with a cryptosporidiosis outbreak. Emerg Infect Dis 8:619–624

    Article  PubMed  Google Scholar 

  • Hummel A, Feuerpfeil I (2003) Auftreten von obligat und fakultativ pathogenen Organismen in Trinkwasser-Biofilmen: Campylobacter und Yersinia. In: Flemming H-C (ed) Erfassung des Wachstums und des Kontaminationspotentials von Biofilmen in der Verteilung von Trinkwasser. IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH, Mülheim an der Ruhr, pp 103–126

    Google Scholar 

  • Jones K, Bradshaw SB (1996) Biofilm formation by the Enterobacteriaceae: a comparison between Salmonella enteritidis, Escherichia coli and a nitrogen-fixing strain of Klebsiella pneumoniae. J Appl Bacteriol 80:458–464

    Article  PubMed  CAS  Google Scholar 

  • Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396

    Article  PubMed  CAS  Google Scholar 

  • Juhna T, Birzniece D, Larsson S, Zulenkovs D, Sharipo A, Azevedo NF, Ménard-Szczebara F, Castagnet S, Féliers C, Keevil CW (2007) Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks. Appl Environ Microbiol 73:7456–7464

    Article  PubMed  CAS  Google Scholar 

  • Kalmbach S, Manz W, Szewzyk U (1997) Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Microbiol Ecol 22:265–279

    Article  CAS  Google Scholar 

  • Keevil CW (2002) Pathogens in environmental biofilms. In: Bitton G (ed) Encyclopedia of environmental microbiology, vol 4. Wiley, New York, pp 2339–2356

    Google Scholar 

  • Keevil CW (2003) Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol 47(5):105–116

    PubMed  CAS  Google Scholar 

  • Keevil CW, Mackerness CW, Colbourne JS (1990) Biocide treatment of biofilms. Int Biodet 26:169–179

    Article  CAS  Google Scholar 

  • Keinänen-Toivola M, Revetta RP, Santo Domingo JW (2006) Identification of active bacterial communities in a model drinking water biofilm system using 16S rRNA-based clone libraries. FEMS Microbiol Lett 257:182–188

    Article  PubMed  CAS  Google Scholar 

  • Kilb B, Lange B, Schaule G, Flemming H-C, Wingender J (2003) Contamination of drinking water by coliforms from biofilms grown on rubber-coated valves. Int J Hyg Environ Health 206:563–573

    Article  PubMed  Google Scholar 

  • King CH, Shotts EB Jr, Wooley RE, Porter KG (1988) Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl Environ Microbiol 54:3023–3033

    PubMed  CAS  Google Scholar 

  • Konishi T, Yamashiro T, Koide M, Nishizono A (2006) Influence of temperature on growth of Legionella pneumophila biofilm determined by precise temperature gradient temperature gradient incubator. J Biosci Bioeng 101:478–484

    Article  PubMed  CAS  Google Scholar 

  • Kristich CJ, Li Y-H, Cvitkovitch DG, Dunny GM (2004) Esp-independent biofilm formation by Enterococcus faecalis. J Bacteriol 186:154–163

    Article  PubMed  CAS  Google Scholar 

  • Kuiper MW, Wullings BA, Akkermans ADL, Beumer RR, van der Kooij D (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70:6826–6833

    Article  PubMed  CAS  Google Scholar 

  • Långmark J, Storey MV, Ashbolt NJ, Stenström TA (2005a) Biofilms in urban water distribution system: measurement of biofilm biomass, pathogens and pathogen persistence within the Greater Stockholm area. Sweden Water Sci Technol 52(8):181–189

    Google Scholar 

  • Långmark J, Storey MV, Ashbolt NJ, Stenström TA (2005b) Accumulation and fate of microorganisms and microspheres in biofilms formed in a pilot-scale water distribution systems. Appl Environ Microbiol 71:706–712

    Article  PubMed  CAS  Google Scholar 

  • Lau HY, Ashbolt NJ (2009) The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol 107:368–378

    Article  PubMed  CAS  Google Scholar 

  • LeChevallier MW, Hassenauer TS, Camper AK, McFeters GA (1984) Disinfection of bacteria attached to granular activated carbon. Appl Environ Microbiol 48:918–923

    PubMed  CAS  Google Scholar 

  • LeChevallier MW, Babcock TM, Lee RG (1987) Examination and characterization of distribution system biofilms. Appl Environ Microbiol 53:2714–2724

    PubMed  CAS  Google Scholar 

  • LeChevallier MW, Cawthon CP, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499

    PubMed  CAS  Google Scholar 

  • Leclerc H, Mossel DAA, Edberg SC, Struijk CB (2001) Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu Rev Microbiol 55:201–234

    Article  PubMed  CAS  Google Scholar 

  • Lee D-G, Kim S-J (2003) Bacterial species in biofilm cultivated from the end of the Seoul water distribution system. J Appl Microbiol 95:317–324

    Article  PubMed  Google Scholar 

  • Lehtola MJ, Pitkänen T, Miebach L, Miettinen IT (2006a) Survival of Campylobacter jejuni in potable water biofilms: a comparative study with different detection methods. Water Sci Technol 54(3):57–61

    Article  PubMed  CAS  Google Scholar 

  • Lehtola MJ, Torvinen E, Miettinen IT, Keevil CW (2006b) Fluorescence in situ hybridization using peptide nucleic acid probes for rapid detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in potable-water biofilms. Appl Environ Microbiol 72:848–853

    Article  PubMed  CAS  Google Scholar 

  • Lehtola M, Torvinen E, Kusnetsov J, Pitkänen T, Maunula L, von Bonsdorff C-H, Martikainen PJ, Wilks SA, Keevil CW, Meittinen IT (2007) Survival of Mycobacterium avium, Legionella pneumophila, Escherichia coli, and caliciviruses in drinking water-associated biofilms grown under high-shear turbulent flow. Appl Environ Microbiol 73:2854–2859

    Article  PubMed  CAS  Google Scholar 

  • Li J, McLellan S, Ogawa S (2006) Accumulation and fate of green fluorescent labeled Escherichia coli in laboratory-scale drinking water biofilters. Water Res 40:3023–3028

    Article  PubMed  CAS  Google Scholar 

  • Linke S, Lenz J, Gemein S, Exner M, Gebel J (2010) Detection of Helicobacter pylori in biofilms by real-time PCR. Int J Hyg Environ Health 213:176–182

    Article  PubMed  CAS  Google Scholar 

  • Loret J-F, Greub G (2010) Free-living amoebae: biological by-passes in water treatment. Int J Hyg Environ Health 213:167–175

    Article  PubMed  CAS  Google Scholar 

  • Lucas CE, Brown E, Fields BS (2006) Type IV pili and type III secretion play a limited role in Legionella pneumophila biofilm colonization and retention. Microbiology 152:3569–3573

    Article  PubMed  CAS  Google Scholar 

  • Mackay WG, Gribbon LT, Barer MR, Reid DC (1999) Biofilms in drinking water systems: a possible reservoir for Helicobacter pylori. J Appl Microbiol Symp Suppl 85:52S–59S

    Article  Google Scholar 

  • Mampel J, Spirig T, Weber SS, Haagensen JAJ, Molin S, Hilbi H (2006) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72:2885–2895

    Article  PubMed  CAS  Google Scholar 

  • Martiny AC, Jørgensen TM, Albrechtsen H-J, Arvin E, Molin S (2003) Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl Environ Microbiol 69:6899–6907

    Article  PubMed  CAS  Google Scholar 

  • Mavridou A, Kamma J, Mandilara G, Delaportas P, Komioti F (2006) Micobial risk assessment of dental unit water systems in general practice in Greece. Water Sci Technol 54(3):269–273

    Article  PubMed  CAS  Google Scholar 

  • McDougald D, Klebensberger J, Tolker-Nielsen T, Webb JS, Conibear T, Rice SA, Kirov SM, Matz C, Kjelleberg S (2008) Pseudomonas aeruginosa: a model for biofilm formation. In: Rehm BHA (ed) Pseudomonas: model organism, pathogen, cell factory. Wiley-VCH, Weinheim, pp 215–253

    Google Scholar 

  • Mittelman MW (1995) Biofilm development in purified water systems. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, UK, pp 133–147

    Chapter  Google Scholar 

  • Moritz MM, Flemming H-C, Wingender J (2010) Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Environ Health 213:190–197

    Article  PubMed  CAS  Google Scholar 

  • Murga R, Forster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147:3121–3126

    PubMed  CAS  Google Scholar 

  • Norton CD, LeChevallier MW (2000) A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol 66:268–276

    Article  PubMed  CAS  Google Scholar 

  • Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425

    PubMed  CAS  Google Scholar 

  • Ortolano GA, McAlister MB, Angelbeck JA, Schaffer J, Russell RL, Maynard E, Wenz B (2005) Hospital water point-of-use filtration: a complementary strategy to reduce the risk of nosocomial infection. Am J Infect Control 33:S1–S19

    Article  PubMed  Google Scholar 

  • Packer PJ, Holt DM, Colbourne JS, Keevil CW (1997) Does Klebsiella oxytoca grow in the biofilm of water distribution systems? In: Kay D, Fricker C (eds) Coliforms and E. coli. Problem or solution? The Royal Society of Chemistry, Cambridge, UK, pp 189–194

    Google Scholar 

  • Park SR, Mackay WG, Reid DC (2001) Helicobacter sp. recovered from drinking water biofilm sampled from a water distribution system. Water Res 35:1624–1626

    Article  PubMed  CAS  Google Scholar 

  • Payment P, Waite M, Dufour A (2003) Introducing parameters for the assessment of drinking water quality. In: Dufour A, Snozzi M, Koster W, Bartram J, Ronchi E, Fewtrell L (eds) Assessing microbial safety of drinking water: improving approaches and methods. WHO, OECD, London, pp 47–77

    Google Scholar 

  • Pedersen K (1990) Biofilm development on stainless steel and PVC surfaces in drinking water. Water Res 24:239–243

    Article  CAS  Google Scholar 

  • Percival SL, Thomas JG (2009) Transmission of Helicobacter pylori and the role of water and biofilms. J Water Health 7:469–477

    Article  PubMed  Google Scholar 

  • Percival S, Chalmers R, Embrey M, Hunter P, Sellwood J, Wyn-Jones P (2004) Microbiology of waterborne diseases. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Piao Z, Sze CC, Barysheva O, Iida K-I, Yoshida S-I (2006) Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 72:1613–1622

    Article  PubMed  CAS  Google Scholar 

  • Poynter SFB, Mead GC (1964) Volatile organic liquids and slime production. J Appl Bacteriol 27:182–195

    Article  CAS  Google Scholar 

  • Pryor M, Springthorpe S, Riffard S, Brooks T, Huo Y, Davis G, Sattar SA (2004) Investigation of opportunistic pathogens in municipal drinking water under different supply and treatment regimes. Water Sci Technol 50(1):83–90

    PubMed  CAS  Google Scholar 

  • Quignon F, Sardin M, Kiene L, Schwartzbrod L (1997) Poliovirus-1 inactivation and interaction with biofilm: a pilot-scale study. Appl Environ Microbiol 63:978–982

    PubMed  CAS  Google Scholar 

  • Rättö M, Verhoef R, Suihko M-L, Blanco A, Schols HA, Voragen AGJ, Wilting R, Siika-aho M, Buchert J (2006) Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes. J Ind Microbiol Biotechnol 33:359–367

    Article  PubMed  CAS  Google Scholar 

  • Riffard S, Douglass S, Brooks T, Springthorpe S, Filion LG, Sattar SA (2001) Occurrence of Legionella in groundwater: an ecological study. Water Sci Technol 43(12):99–102

    PubMed  CAS  Google Scholar 

  • Robinson PJ, Walker JT, Keevil CW, Cole J (1995) Reporter genes and fluorescent probes for studying the colonisation of biofilms in a drinking water supply line by enteric bacteria. FEMS Microbiol Lett 129:183–188

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Keevil CW (1992) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilms visualized by using episcopic differential interference contrast microscopy. Appl Environ Microbiol 58:2326–2330

    PubMed  CAS  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994a) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol 60:1585–1592

    PubMed  CAS  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994b) Influence of plumbing materials on biofilms formation and growth of Legionella pneumophila in potable water systems. Appl Environ Microbiol 60:1842–1851

    PubMed  CAS  Google Scholar 

  • Rosenzweig WD, Minnigh H, Pipes WO (1986) Fungi in potable water distribution systems. J Am Water Works Assoc 78:53–55

    Google Scholar 

  • Rusin PA, Rose JB, Haas CN, Gerba CP (1997) Risk assessment of opportunistic bacterial pathogens in drinking water. Rev Environ Contam Toxicol 152:57–83

    Article  PubMed  CAS  Google Scholar 

  • Sartory DP, Holmes P (1997) Chlorine sensitivity of environmental, distribution system and biofilm coliforms. Water Sci Technol 35(11–12):289–292

    CAS  Google Scholar 

  • Schulze-Röbbecke R, Fischeder R (1989) Mycobacteria in biofilms. Zbl Hyg 188:385–390

    Google Scholar 

  • Schulze-Röbbecke R, Ilg B (2003) Auftreten von obligat und fakultativ pathogenen Organismen in Trinkwasser-Biofilmen: Mykobakterien. In: Flemming H-C (ed) Erfassung des Wachstums und des Kontaminationspotentials von Biofilmen in der Verteilung von Trinkwasser. IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH, Mülheim an der Ruhr, Germany, pp 185–203

    Google Scholar 

  • Schulze-Röbbecke R, Janning B, Fischeder R (1992) Occurrence of mycobacteria in biofilm samples. Tub Lung Dis 73:141–144

    Article  Google Scholar 

  • Schwartz T, Hoffmann S, Obst U (1998a) Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered water systems. Water Res 32:2787–2797

    Article  CAS  Google Scholar 

  • Schwartz T, Kalmbach S, Hoffmann S, Szewzyk U, Obst U (1998b) PCR-based detection of mycobacteria in biofilms from a drinking water distribution system. J Microbiol Meth 34:113–123

    Article  CAS  Google Scholar 

  • Searcy KE, Packman AI, Atwill ER, Harter T (2006) Capture and retention of Cryptosporidium parvum oocysts by Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 72:6242–6247

    Article  PubMed  CAS  Google Scholar 

  • September SM, Brözel VS, Venter SN (2004) Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl Environ Microbiol 70:7571–7573

    Article  PubMed  CAS  Google Scholar 

  • September SM, Els FA, Venter SN, Brözel VS (2007) Prevalence of bacterial pathogens in biofilms of drinking water distribution systems. J Water Health 5:219–227

    PubMed  CAS  Google Scholar 

  • Servais P, Laurent P, Randon G (1995) Comparison of the bacterial dynamics in various French distribution systems. J Water SRT Aqua 44:10–17

    CAS  Google Scholar 

  • Sibille I, Sime-Ngando T, Mathieu L, Block JC (1998) Protozoan bacterivory and Escherichia coli survival in drinking water distribution systems. Appl Environ Microbiol 64:197–202

    PubMed  CAS  Google Scholar 

  • Silva M, McLellan S, Li J (2006) The removal of green fluorescent labelled Escherichia coli by pilot scale drinking water biofilters. In: Gimbel R, Graham NJD, Collins MR (eds) Recent progress in slow sand and alternative biofiltration processes. IWA, London, pp 337–344

    Google Scholar 

  • Simões LC, Simões M, Vieira MJ (2007) Microbial interactions in drinking water biofilms. In: Gilbert P, Allison D, Brading M, Pratten J, Spratt D, Upton M (eds) Biofilms: coming of age. The Biofilm Club, Manchester, UK, pp 43–52

    Google Scholar 

  • Skraber S, Schijven J, Gantzer C, de Roda Husman AM (2005) Pathogenic viruses in drinking-water biofilms: a public health risk. Biofouling 2:105–117

    Google Scholar 

  • Skraber S, Ogorzaly L, Helmi K, Maul A, Hoffmann L, Cauchie H-M, Gantzer C (2009) Occurrence and persistence of enteroviruses, noroviruses and F-specific RNA phages in natural wastewater biofilms. Water Res 43:4780–4789

    Article  PubMed  CAS  Google Scholar 

  • Stark RM, Gerwig GJ, Pitman RS, Potts LF, Williams NA, Greenman J, Weinzweig IP, Hirst TR, Millar MR (1999) Biofilm formation by Helicobacter pylori. Lett Appl Microbiol 28:121–126

    Article  PubMed  CAS  Google Scholar 

  • Steed KA, Falkinham JO III (2006) Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl Environ Microbiol 72:4007–4011

    Article  PubMed  CAS  Google Scholar 

  • Steinert M, Emödy L, Amann R, Hacker J (1997) Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl Environ Microbiol 63:2047–2053

    PubMed  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  PubMed  CAS  Google Scholar 

  • Storey MV, Ashbolt NJ (2001) Persistence of two model enteric viruses (B40-8 and MS-2 bacteriophages) in water distribution pipe biofilms. Water Sci Technol 43(12):133–138

    PubMed  CAS  Google Scholar 

  • Storey MV, Långmark J, Ashbolt NJ, Stenström TA (2004a) The fate of legionellae within distribution pipe biofilms: measurement of their persistence, inactivation and detachment. Water Sci Technol 49(11–12):269–275

    PubMed  CAS  Google Scholar 

  • Storey MV, Ashbolt NJ, Stenström TA (2004b) Biofilms, thermophilic amoebae and Legionella pneumophila: a quantitative risk assessment for distributed water. Water Sci Technol 50(1):77–82

    PubMed  CAS  Google Scholar 

  • Stout JE, Yu VL, Best MG (1985) Ecology of Legionella pneumophila within water distribution systems. Appl Environ Microbiol 49:221–228

    PubMed  CAS  Google Scholar 

  • Szabo JG, Rice EW, Bishop PL (2006) Persistence of Klebsiella pneumoniae on simulated biofilm in a model drinking water system. Environ Sci Technol 40:4996–5002

    Article  PubMed  CAS  Google Scholar 

  • Szewzyk U, Manz W, Amann R, Schleifer KH, Stenström T-A (1994) Growth and in situ detection of a pathogenic Escherichia coli in biofilms of a heterotrophic water-bacterium by use of 16S- and 23S-rRNA-directed fluorescent oligonucleotide probes. FEMS Microbiol Ecol 13:169–176

    Article  CAS  Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer K-H (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Ross K, Bentham R (2009) Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb Ecol 58:538–547

    Article  PubMed  Google Scholar 

  • Temmerman R, Vervaeren H, Noseda B, Boon B, Verstrate W (2006) Nectotrophic growth of Legionella pneumophila. Appl Environ Microbiol 72:4323–4328

    Article  PubMed  CAS  Google Scholar 

  • Thomas V, Loret J-F, Jousset M, Greub G (2008) Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environ Microbiol 10:2728–2745

    Article  PubMed  CAS  Google Scholar 

  • Thomas V, McDonnell G, Denyer SP, Maillard J-Y (2010) Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 34:231–259

    Article  PubMed  CAS  Google Scholar 

  • Torvinen E, Suomalainen S, Lehtola MJ, Miettinen IT, Zacheus O, Paulin L, Katila M-L, Martikainen PJ (2004) Mycobacteria in water and loose deposits of drinking water distribution systems in Finland. Appl Environ Microbiol 70:1973–1981

    Article  PubMed  CAS  Google Scholar 

  • Torvinen E, Lehtola MJ, Martikainen PJ, Miettinen IT (2007) Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature. Appl Environ Microbiol 73:6201–6207

    Article  PubMed  CAS  Google Scholar 

  • Tsitko I, Rahkila R, Priha O, Ali-Vehmas T, Terefework Z, Soini H, Salkinoja-Salonen MS (2006) Isolation and automated ribotyping of Mycobacterium lentiflavum from drinking water distribution system and clinical specimens. FEMS Microbiol Lett 256:236–243

    Article  PubMed  CAS  Google Scholar 

  • Türetgen I, Cotuk A (2007) Monitoring of biofilm-associated Legionella pneumophila on different substrata in model cooling tower system. Environ Monit Assess 125:271–279

    Article  PubMed  CAS  Google Scholar 

  • Unhoch MJ, Vore RD (2005) Recreational water treatment biocides. In: Paulus W (ed) Directory of microbicides for the protection of materials: a handbook. Springer, Dordrecht, pp 141–155

    Google Scholar 

  • Vaerewijck MJM, Huys G, Palomino JC, Swings J, Portaels F (2005) Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev 29:911–934

    Article  PubMed  CAS  Google Scholar 

  • Van der Kooij D (1991) Nutritional requirements of aeromonads and their multiplication in drinking water. Experientia 47:444–446

    PubMed  Google Scholar 

  • Van der Kooij D, Veenendaal HR, Slaats NPG, Vonk D (2002) Biofilm formation and multiplication of Legionella on synthetic pipe materials in contact with treated water under static and dynamic conditions. In: Marre R, Abu Kwaik Y, Bartlett C, Cianciotto NP, Fields BS, Frosch M, Hacker J, Lück PC (eds) Legionella. ASM, Washington, DC, pp 86–89

    Google Scholar 

  • Van der Kooij D, Veenendaal HR, Scheffer WJH (2005) Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Res 39:2789–2798

    Article  PubMed  CAS  Google Scholar 

  • Vanden Bossche G, Krietemeyer S (1995) Detergent conditioning of environmental samples: the most sensitive method for the detection of viral activity. Presented at the IAWQ 17th Biennial international conference health-related water microbiology symposium, Budapest, Hungary, July 1994

    Google Scholar 

  • Vervaeren H, Temmerman R, Devos L, Boon N, Verstraete W (2006) Introduction of a boost of Legionella pneumophila into a stagnant-water model by heat treatment. FEMS Microbiol Ecol 58:583–592

    Article  PubMed  CAS  Google Scholar 

  • Vess RW, Anderson RL, Carr JH, Bond WW, Favero MS (1993) The colonization of solid PVC surfaces and the acquisition of resistance to germicides by water micro-organisms. J Appl Bacteriol 74:215–221

    Article  PubMed  CAS  Google Scholar 

  • Wadowsky RM, Wolford R, McNamara AM, Yee RB (1985) Effect of temperature, pH, and oxygen level on the multiplication of naturally occurring Legionella pneumophila in potable water. Appl Environ Microbiol 49:1197–1205

    PubMed  CAS  Google Scholar 

  • Wagner D, Fischer W, Paradies HH (1992) Copper deterioration in a water distribution system of a county hospital in Germany caused by microbially influenced corrosion: II. Simulation of the corrosion process in two test rigs installed in this hospital. Werkst Korros 43:496–502

    Article  CAS  Google Scholar 

  • Walker JT, Mackerness CW, Rogers J, Keevil CW (1995a) Heterogenous mosaic biofilm-a haven for waterborne pathogens. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, pp 196–204

    Chapter  Google Scholar 

  • Walker JT, Mackerness CW, Mallon D, Makin T, Williets T, Keevil CW (1995b) Control of Legionella pneumophila in a hospital water system by chlorine dioxide. J Ind Microbiol 15:384–390

    Article  PubMed  CAS  Google Scholar 

  • Wallace WH, Rice JF, White DC, Sayler GS (1994) Distribution of alginate genes in bacterial isolates from corroded metal surfaces. Microb Ecol 27:213–223

    CAS  Google Scholar 

  • Warris A, Klaassen CHW, Meis JFG, de Ruiter MT, de Valk HA, Abrahamsen TG, Gaustad P, Verweij PE (2003) Molecular epidemiology of Aspergillus fumigatus isolates recovered from water, air, and patients shows two clusters of genetically distinct strains. J Clin Microbiol 41:4101–4106

    Article  PubMed  CAS  Google Scholar 

  • Watson CL, Owen RJ, Said B, Lai S, Lee JV, Surman-Lee S, Nichols G (2004) Detection of Helicobacter pylori by PCR but not culture in water and biofilm samples from drinking water distribution systems in England. J Appl Microbiol 97:690–698

    Article  PubMed  CAS  Google Scholar 

  • White DC, Kirkegaard RD, Palmer RJ Jr, Flemming CA, Chen G, Leung KT, Phiefer CB, Arrage AA (1999) The biofilm ecology of microbial biofouling, biocide resistance and corrosion. In: Keevil CW, Godfree A, Holt D, Dow C (eds) Biofilms in the aquatic environment. The Royal Society of Chemistry, Cambridge, pp 120–130

    Google Scholar 

  • WHO (2008) Guidelines for drinking-water quality: incorporating the first and second addenda, vol 1, 3rd edn, Recommendations. World Health Organization, Geneva

    Google Scholar 

  • Williams MW, Braun-Howland EB (2003) Growth of Escherichia coli in model distribution system biofilms exposed to hypochlorous acid or monochloramine. Appl Environ Microbiol 69:5463–5471

    Article  PubMed  CAS  Google Scholar 

  • Wingender J, Flemming H-C (2004) Contamination potential of drinking water distribution network biofilms. Water Sci Technol 49(11–12):277–286

    PubMed  CAS  Google Scholar 

  • Wolyniak EA, Hargreaves BR, Jellison KL (2009) Retention and release of Cryptosporidium parvum oocysts by experimental biofilms composed of a natural stream microbial community. Appl Environ Microbiol 75:4624–4626

    Article  PubMed  CAS  Google Scholar 

  • Wullings BA, Bakker G, van der Kooij D (2011) Concentration and diversity of uncultered Legionella spp. in two unchlorinated drinking water supplies with different concentrations of natural organic matter. Appl Environ Microbiol 77:634–641

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Kim D, Lee T (2010) Microbial diversity in biofilms on water distribution pipes of different materials. Water Sci Technol 61:163–171

    Article  PubMed  CAS  Google Scholar 

  • Zacheus OM, Lehtola MJ, Korhonen LK, Martikainen PJ (2001) Soft deposits, the key site for microbial growth in drinking water distribution networks. Water Res 35:1757–1765

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jost Wingender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wingender, J. (2011). Hygienically Relevant Microorganisms in Biofilms of Man-Made Water Systems. In: Flemming, HC., Wingender, J., Szewzyk, U. (eds) Biofilm Highlights. Springer Series on Biofilms, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19940-0_9

Download citation

Publish with us

Policies and ethics