Skip to main content

Small RNAs for Crop Improvement: Applications and Considerations for Ecological Risk Assessments

  • Chapter
  • First Online:
Non Coding RNAs in Plants

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The world faces many challenges in the development of crop systems that produce more food, fiber, and biofuels while minimizing environmental impacts. Today, the central dogma of “one gene, one protein” has been supplanted by a realization that small RNA molecules have profound effects in plants and can be engineered to create novel crop traits. Crop improvement using small RNAs has potential in two broad areas: (1) modifying metabolic and biochemical pathways and (2) silencing genes in pest organisms to provide plant protection. In the USA, genetically engineered (GE) crops have been grown since 1992 with RNA-mediated virus resistance and a few other traits. At present, proof-of-concept experiments have demonstrated potential for insect resistance, nematode resistance, increased nutritional value, decreased human allergens, better postharvest quality, new flower colors, and other traits. As more RNA-mediated traits are invented, regulatory agencies are faced with the task of assessing the safety of these traits for humans and the environment. In general, it appears that current ecological risk assessment (ERA) frameworks will be suitable for RNA-mediated traits. However, there are some new challenges in predicting risks prior to experimental field trials or commercial crop production. Targeted research is needed to answer key questions regarding the following: (1) environmental persistence and abundance of artificial small RNAs, (2) off-target effects within GE crops, (3) negative effects on nontarget organisms, (4) effects of genetic mutations and polymorphisms in crops and other organisms, (5) uncertainty in risk analysis, and (6) technologies to rapidly identify and quantify GE crops and foods containing artificial small RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen R, Millgate A, Chitty J et al (2004) RNAi-mediated replacement of morphine with the ­nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Andow DA, Zwalen C (2006) Assessing environmental risks of transgenic plants. Ecol Lett 9:196–214

    Article  PubMed  CAS  Google Scholar 

  • Auer C (2003) Tracking genes from seed to supermarket. Trends Plant Sci 8:591–597

    Article  PubMed  CAS  Google Scholar 

  • Auer C (2008) Ecological risk assessment and regulation for genetically-modified ornamental plants. Crit Rev Plant Sci 27:255–271

    Article  Google Scholar 

  • Auer C, Frederick R (2009) Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 27:644–651

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Chiang C, Wang J, Jan F et al (2001) Comparative reactions of recombinant papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CP-transgenic papaya. J Gen Virol 82:2827–2836

    PubMed  CAS  Google Scholar 

  • Conner AJ, Glare TR, Nap J-P (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46

    Article  PubMed  Google Scholar 

  • Cox KM, Sterling JD, Regan JT et al (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597

    Article  PubMed  CAS  Google Scholar 

  • Craig W, Tepfer M, Degrassi G et al (2008) An overview of general features of risk assessments of genetically modified crops. Euphytica 164:853–880

    Article  Google Scholar 

  • Davuluri GR, Tuinen A, Fraser PD et al (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomato. Nat Biotechnol 23:890–895

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2005) A two-for-one in tomato nutritional enhancement. Nat Biotechnol 23:825–826

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Voinnet O (2008) Mixing and matching: the essence of plant systemic silencing? Trends Genet 24:151–154

    Article  PubMed  CAS  Google Scholar 

  • Eamens A, Wang M-B, Smith NA et al (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  PubMed  CAS  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR et al (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442

    Article  PubMed  CAS  Google Scholar 

  • Fairbairn DJ, Cavallaro AS, Bernard M et al (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533

    Article  PubMed  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Fuentes A, Ramos PL, Fiallo E et al (2006) Intron-hairpin RNA derived from replication associated protein C1 gene confers immunity to Tomato Yellow Leaf Curl Virus infection in transgenic tomato plants. Transgenic Res 15:291–304

    Article  PubMed  CAS  Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92

    Article  PubMed  CAS  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Genetics 10:94–108

    PubMed  CAS  Google Scholar 

  • Giddings LV (2006) “Cisgenic” as a product designation. Nat Biotechnol 24:1329

    Article  PubMed  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  PubMed  CAS  Google Scholar 

  • Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    Article  PubMed  CAS  Google Scholar 

  • Hayes KR (2004) Best practice and current practice in ecological risk assessment for genetically modified organisms. CSIRO Division of Marine Research. http://www.environment.gov.au/settlements/biotechnology/publications/bestpractice.html (Last viewed 2 May 2011)

  • Hebert CG, Valdes JJ, Bentley WE (2008) Beyond silencing – engineering applications of RNA interference and antisense technology for altering cellular phenotypes. Curr Opin Biotechnol 19:500–505

    Article  PubMed  CAS  Google Scholar 

  • Herman EM, Helm RM, Jung R et al (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43

    Article  PubMed  CAS  Google Scholar 

  • Hokanson K, Heron D, Gupta S et al (1999) The concept of familiarity and pest resistant plants. In: Proceedings of a workshop on the ecological effects of pest resistance genes in managed ecosystems. http://digitalcommons.unl.edu/usdaarsfacpub/479/ (Last viewed 2 May 2011)

  • Houmard NM, Mainville JL, Bonin CP et al (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Allen R, Davis EL et al (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  PubMed  CAS  Google Scholar 

  • Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential for RNAi for pest control: a review. J Insect Physiol 56:227–235

    Article  PubMed  CAS  Google Scholar 

  • Ivashuta SI, Petrick JS, Heisel SE et al (2009) Endogenous small RNAs in grain: semi-quantification and sequence homology to humans and animal genes. Food Chem Toxicol 47:353–360

    Article  PubMed  CAS  Google Scholar 

  • Jin H (2008) Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 582:2679–2684

    Article  PubMed  CAS  Google Scholar 

  • Kang BC, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Ann Rev Phytopathol 43:581–621

    Article  CAS  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y et al (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Kusaba M (2004) RNA interference in plants. Curr Opin Biotechnol 15:139–143

    Article  PubMed  CAS  Google Scholar 

  • Kusaba M, Miyahara K, Iida S et al (2003) Low glutelin content 1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467

    Article  PubMed  CAS  Google Scholar 

  • Leonard E, Nielsen D, Solomon K et al (2008) Engineering microbes with synthetic biology frameworks. Trends Biotechnol 26:674–681

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Dafny-Yelin M, Tzfira T (2008) Attacking the defenders: plant viruses fight back. Trends Microbiol 16:194–197

    Article  PubMed  CAS  Google Scholar 

  • Lindbo JA, Dougherty WG (2005) Plant pathology and RNAi: a brief history. Ann Rev Phytopathol 43:191–204

    Article  CAS  Google Scholar 

  • Lucioli A, Sallustio DE, Barboni D et al (2008) A cautionary note on pathogen-derived sequences. Nat Biotechnol 26:617–619

    Article  PubMed  CAS  Google Scholar 

  • Mahmood-ur-Rahman IA, Husnain R, Riazuddin S (2008) RNA interference: the story of gene silencing in plants and humans. Biotechnol Adv 26:202–209

    Article  PubMed  CAS  Google Scholar 

  • Mao Y-B, Cai W-J, Wang J-W et al (2007) Silencing a cotton bollworm P450 monoxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Marmiroli N, Agrimonti C, Visioli G et al (2000) Silencing of G1-1 and A2-1 genes. Effects on general plant phenotype and on tuber dormancy in Solanum tuberosum L. Potato Res 43:313–323

    Article  CAS  Google Scholar 

  • Martino-Catt S, Sachs ES (2008) Editors choice series: the next generation of biotech crops. Plant Physiol 147:3–5

    Article  PubMed  CAS  Google Scholar 

  • Michaud V, Gil P, Kwiatek O et al (2007) Long-term storage at tropical temperature of dried-blood filter papers for detection and genotyping of RNA and DNA viruses by direct PCR. J Virol Meth 146:257–265

    Article  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J et al (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka T, Mishiba K, Abe Y et al (2008) Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnol 25:61–68

    Article  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  • Navarro L, Jay F, Nomura K et al (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–967

    Article  PubMed  CAS  Google Scholar 

  • Newell-McGloughlin M (2008) Nutritionally improved agricultural crops. Plant Physiol 147:939–953

    Article  PubMed  CAS  Google Scholar 

  • Nickson T (2008) Planning environmental risk assessment for genetically modified crops: problem formulation for stress-tolerant crops. Plant Physiol 147:494–502

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K (2003) Transgenic organisms – time for conceptual diversification? Nat Biotechnol 21:227–228

    Article  PubMed  CAS  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y et al (2003) Producing decaffeinated coffee plants. Nature 423:823

    Article  PubMed  CAS  Google Scholar 

  • Ogita S, Uefuji H, Morimoto M et al (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931–941

    Article  PubMed  CAS  Google Scholar 

  • Oppermana CH, Birda DM, Williamsond VM et al (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 105:14802–14807

    Article  Google Scholar 

  • Parrott W, Chassy B, Ligon J et al (2010) Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food Chem Toxicol 48:1773–1790

    Article  PubMed  CAS  Google Scholar 

  • Price DR, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  PubMed  CAS  Google Scholar 

  • Raybould A (2007) Ecological versus ecotoxicological methods for assessing the environmental risks of transgenic crops. Plant Sci 173:589–602

    Article  CAS  Google Scholar 

  • Regina A, Bird A, Topping D et al (2006) High amylose wheat generated by RNAi interference improves indices of large bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM (2007) Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. J Agric Food Chem 55:4281–4288

    Article  PubMed  CAS  Google Scholar 

  • Sanders R, Hiatt W (2005) Tomato transgene structure and silencing. Nat Biotechnol 23:287–289

    Article  PubMed  CAS  Google Scholar 

  • Sandhu APS, Abdelnoor RV, Mackenzie SA (2007) Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci USA 104:176–1770

    Article  Google Scholar 

  • Sanvido O, Romeis J, Bigler F (2007) Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation. Adv Biochem Eng Biotechnol 107:235–278

    PubMed  CAS  Google Scholar 

  • Schouten HJ, Jacobsen E (2008) Cisgenesis and intragenesis, sisters in innovative plant breeding. Trends Plant Sci 13:260–261

    Article  PubMed  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt ­cisgenesis. EMBO Rep 7:750–753

    Article  PubMed  CAS  Google Scholar 

  • Schwall GP, Safford R, Westcott RJ et al (2000) Production of very high amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18:551–554

    Article  PubMed  CAS  Google Scholar 

  • Sheehy RE, Kramer M, Hiatt HR (1988) Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc Natl Acad Sci USA 85:8805–8809

    Article  PubMed  CAS  Google Scholar 

  • Shepherd DN, Martin DP, Thomson JA (2009) Transgenic strategies for developing crops resistant to geminiviruses. Plant Sci 176:1–11

    Article  CAS  Google Scholar 

  • Siritunga D, Sayre R (2003) Generation of cyanogen-free transgenic cassava. Planta 217:367–373

    Article  PubMed  CAS  Google Scholar 

  • Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18:148–153

    Article  PubMed  CAS  Google Scholar 

  • Soosaar JLM, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of resistance to viruses. Nat Rev Microbiol 3:789–798

    Article  PubMed  CAS  Google Scholar 

  • Steeves RM, Todd TC, Essig JS et al (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    Article  CAS  Google Scholar 

  • Stone R (2008) China plans $3.5 billion GE crops initiative. Science 321:1279

    Article  PubMed  CAS  Google Scholar 

  • Stotzky G (2000) Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic soils. J Environ Qual 26:691–705

    Article  Google Scholar 

  • Strauss SH (2003) Genomics, genetic engineering and domestication of crops. Science 300:61–62

    Article  PubMed  CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L et al (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059

    Article  PubMed  CAS  Google Scholar 

  • Suter GW (2007) Ecological risk assessment, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Tepfer M (2002) Risk assessment of virus-resistant transgenic plants. Ann Rev Phytopathol 40:467–491

    Article  CAS  Google Scholar 

  • Tuteja JH, Clough SJ, Chan W-C et al (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16:819–835

    Article  PubMed  CAS  Google Scholar 

  • Vance V, Vaucheret H (2001) RNA silencing in plants – defense and counterdefense. Science 292:2277–2280

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren H, Alder A, Zhang P et al (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70:265–272

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  PubMed  CAS  Google Scholar 

  • Verma AK (2008) RNAi technology for crop improvement. In: Rao GP, Zhao Y, Radchuk VV, Bhatnagar SK (eds) Advances in plant biotechnology. Studium Press, Houston

    Google Scholar 

  • Vlassov VV, Laktionov PP, Rykova EY (2007) Extracellular nucleic acids. Bioessays 29:654–667

    Article  PubMed  CAS  Google Scholar 

  • Von Krauss MP, Kaiser M, Almaas V et al (2008) Diagnosing and prioritizing uncertainties according to their relevance for policy: the case of transgene silencing. Sci Total Environ 390:23–34

    Article  Google Scholar 

  • Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Whangbo JS, Hunter CP (2008) Environmental RNA interference. Trends Genet 24:297–305

    Article  PubMed  CAS  Google Scholar 

  • Xing S, Zachgo S (2007) Pollen lethality: a phenomenon in Arabidopsis RNA interference plants. Plant Physiol 145:330–333

    Article  PubMed  CAS  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double-stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Chan JH, Chan AY et al (2004) Transgenic plant-derived sRNAs can suppress propagation of influenza virus in mammalian cells. FEBS Lett 577:345–350

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Auer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Auer, C. (2011). Small RNAs for Crop Improvement: Applications and Considerations for Ecological Risk Assessments. In: Erdmann, V., Barciszewski, J. (eds) Non Coding RNAs in Plants. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19454-2_28

Download citation

Publish with us

Policies and ethics