Skip to main content

Cell Cycle in Ascidian Eggs and Embryos

  • Chapter
  • First Online:
Cell Cycle in Development

Abstract

In ascidians the cell cycle machinery has been studied mainly in oocytes while ascidian embryos have been used to dissect the mechanism that controls asymmetric cell division (ACD). Here we overview the most specific and often exceptional points and events in cell cycle control in ascidian oocytes and early embryos. Mature stage IV eggs are arrested at metaphase I due to cytostatic factor (CSF). In vertebrates, unfertilized eggs are arrested at metaphase II by CSF. Meta II-CSF is mediated by the Mos/MEK/MAPK/Erp1 pathway, which inhibits the ubiquitin ligase APC/Ccdc20 preventing cyclin B destruction thus stabilizing MPF activity. CSF is inactivated by the fertilization Ca2+ transient that stimulates the destruction of Erp1 thus releasing APC/Ccdc20 from inhibition. Although many of the components of CSF are conserved between the ascidian and the vertebrates, the lack of Erp1 in the ascidians (and indeed other invertebrates) is notable since the Mos/MAPK pathway nonetheless mediates Meta I-CSF. Moreover, since the fertilization Ca2+ transient targets Erp1, it is not clear how the sperm-triggered Ca2+ transient in ascidians (and again other invertebrates) stimulates cyclin B destruction in the absence of Erp1. Nonetheless, like mammalian eggs, sperm trigger a series of Ca2+ oscillations that increases the rate of cyclin B destruction and the subsequent loss of MAPK activity leading to meiotic exit in ascidians. Positive feedback from MPF maintains the Ca2+ oscillations in fertilized ascidian eggs ensuring the eventual loss of MPF stimulating the egg-to-embryo transition. Embryonic cell cycles in the ascidian are highly stereotyped where both the rate of cell division and the orientation of cell division planes are precisely controlled. Three successive rounds of ACD generate two small posterior germ cell precursors at the 64 cell stage. The centrosome-attracting body (CAB) is a macroscopic cortical structure visible by light microscopy that causes these three rounds of ACD. Entry into mitosis activates the CAB causing the whole mitotic spindle to rotate and migrate toward the cortical CAB leading to a highly ACD whereby one small cell is formed that inherits the CAB and approximately 40 maternal postplasmic/PEM RNAs including the germ cell marker vasa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiel A, Leclère L, Robert L, Chevalier S, Houliston E (2009) Conserved functions for Mos in eumetazoan oocyte maturation revealed by studies in a cnidarian. Curr Biol 19:305–311

    Article  CAS  PubMed  Google Scholar 

  • Azoury J, Lee KW, Georget V, Rassinier P, Leader B, Verlhac MH (2008) Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr Biol 18:1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Bao Z, Zhao Z, Boyle TJ, Murray JI, Waterson RH (2008) Control of cell cycle timing during C. elegans embryogenesis. Dev Biol 318:65–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castro A, Peter M, Magnaghi-Jaulin L, Vigneron S, Galas S, Lorca T, Labbe JC (2001) Cyclin B/cdc2 induces c-Mos stability by direct phosphorylation in Xenopus oocytes. Mol Biol Cell 12:2660–2671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chabry LM (1887) Contribution à l’embrologie normale tératologique des ascidies simples. J Anat Physiol Norm Pathol 23:167–321

    Google Scholar 

  • Christiaen L, Wagner E, Shi W, Levine M (2009) Microinjection of morpholino oligos and RNAs in sea squirt (Ciona) embryos. Cold Spring Harb Protoc 12

    Google Scholar 

  • Conklin EG (1905) The organization and cell lineage of the ascidian egg. J Acad Sci Philadelphia 13:1–119

    Google Scholar 

  • Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona. Development 124:589–602

    CAS  PubMed  Google Scholar 

  • Corbo JC, Di Gregorio A, Levine M (2001) The ascidian as a model organism in developmental and evolutionary biology. Cell 106:535–538

    Article  CAS  PubMed  Google Scholar 

  • Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordate are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • Dumollard R, Sardet C (2001) Three different calcium-wave pacemakers in ascidian eggs. J Cell Sci 114:2471–2481

    CAS  PubMed  Google Scholar 

  • Dumollard R, Carroll J, Dupont G, Sardet C (2002) Calcium wave pacemakers in eggs. J Cell Sci 115:3557–3564

    Article  CAS  PubMed  Google Scholar 

  • Foe VE, Alberts BM (1983) Studies on nuclear and cytoplasmic behavior during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci 61:31–70

    CAS  PubMed  Google Scholar 

  • Fujimura M, Takamura K (2000) Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior most blastomeres in early embryos. Dev Genes Evol 210:64–72

    Article  CAS  PubMed  Google Scholar 

  • Gould MC, Stephano JL (1999) MAP kinase, meiosis, and sperm centrosome suppression in Urechis caupo. Dev Biol 216:348–358

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto N, Watanabe N, Furuta Y, Tamemoto H, Sagata N, Yokoyama M, Okazaki K, Nagayoshi M, Takeda N, Ikawa Y et al (1994) Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature 370:68–71

    Article  CAS  PubMed  Google Scholar 

  • Hibino T, Nishikata T, Nishida H (1998) Centrosome-attracting body: a novel structure closely related to unequal cleavages in the ascidian embryo. Dev Growth Differ 40:85–95

    Article  CAS  PubMed  Google Scholar 

  • Hotta K, Mitsuhara K, Takahashi H, Inaba K, Oka K, Gojobori T, Ikeo K (2007) A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev Dyn 236:1790–1805

    Article  PubMed  Google Scholar 

  • Imai KS, Hino K, Yagi K, Satoh N, Satou Y (2004) Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131:4047–4058

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey WR, Capco DG (1978) Differential accumulation and localization of maternal poly(A)-containing RNA during early development of the ascidian Styela. Dev Biol 67:152–166

    Article  Google Scholar 

  • Jones KT, Carroll J, Merriman JA, Whittingham DG, Kono T (1995) Repetitive sperm-induced Ca2+ transients in mouse oocytes are cell cycle dependent. Development 121:3259–3266

    CAS  PubMed  Google Scholar 

  • Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119:447–456

    CAS  PubMed  Google Scholar 

  • Kubiak JZ, Ciemerych MA, Hupalowska A, Sikora-Polaczek M, Polanski Z (2008) On the transition from the meiotic to mitotic cell cycle during early mouse development. Int J Dev Biol 52:201–217

    Article  PubMed  Google Scholar 

  • Kumano G, Nishida H (2007) Ascidian embryonic development: an emerging model system for the study of cell fate specification in chordates. Dev Dyn 236:1732–1747

    Article  CAS  PubMed  Google Scholar 

  • Kumano G, Kawai N, Nishida H (2010) Macho-1 regulates unequal cell divisions independently of its function as a muscle determinant. Dev Biol 344(1):284–292

    Article  CAS  PubMed  Google Scholar 

  • Lambert CC (2008) Signaling pathways in ascidian oocyte maturation: the role of cyclic AMP and follicle cells in germinal vesicle breakdown. Dev Growth Differ 50:181–188

    Article  CAS  PubMed  Google Scholar 

  • Leader B, Lim H, Carabatsos MJ, Harrington A, Ecsedy J, Pellman D, Maas R, Leder P (2002) Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat Cell Biol 4:921–928

    Article  CAS  PubMed  Google Scholar 

  • Lemaire P, Smith WC, Nishida H (2008) Ascidians and the plasticity of the chordate developmental program. Curr Biol 18:R620–R631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levasseur M, McDougall A (2000) Sperm-induced calcium oscillations at fertilisation in ascidians are controlled by cyclin B1-dependent kinase activity. Development 127:631–641

    CAS  PubMed  Google Scholar 

  • Levasseur M, McDougall A (2003) IP3 responsiveness is regulated in a meiotic cell cycle dependent manner: implications for fertilisation induced calcium signaling. Cell Cycle 2:610–614

    Article  CAS  PubMed  Google Scholar 

  • Levasseur M, Carroll M, Jones KT, McDougall A (2007) A novel mechanism controls the Ca2+ oscillations triggered by activation of ascidian eggs and has an absolute requirement for CDK1 activity. J Cell Sci 120:1763–1771

    Article  CAS  PubMed  Google Scholar 

  • Lorca T, Cruzalegui FH, Fesquet D, Cavadore J-C, Mery J, Means A, Doree M (1993) Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilisation of Xenopus eggs. Nature 366:270–273

    Article  CAS  PubMed  Google Scholar 

  • Masui Y (2000) The elusive cytostatic factor in the animal egg. Nat Rev Mol Cell Biol 1:228–232

    Article  CAS  PubMed  Google Scholar 

  • McDougall A (2001) Sperm-triggered calcium oscillations at fertilization. In: The biology of ascidians. Springer, pp 36–46

    Google Scholar 

  • McDougall A, Levasseur M (1998) Sperm triggered calcium oscillations during meiosis in ascidian oocytes first pause, restart then stop: correlations with cell cycle kinase activity. Development 125:4451–4459

    CAS  PubMed  Google Scholar 

  • McDougall A, Sardet C (1995) Function and characteristics of repetitive calcium waves associated with meiosis. Curr Biol 5:318–328

    Article  CAS  PubMed  Google Scholar 

  • Mehlmann LM (2005) Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 130:791–799

    Article  CAS  PubMed  Google Scholar 

  • Miya T, Nishida H (2003) Expression pattern and transcriptional control of SoxB1 in embryos of the ascidian Halocynthia roretzi. Zoolog Sci 20:59–67

    Article  CAS  PubMed  Google Scholar 

  • Mochida S, Hunt T (2007) Calcineurin is required to release Xenopus egg extracts from meiotic M phase. Nature 449:336–340

    Article  CAS  PubMed  Google Scholar 

  • Moos J, Visconti PE, Moore GD, Schultz RM, Kopf GS (1995) Potential role of mitogen-activated protein kinase in pronuclear envelope assembly and disassembly following fertilization of mouse eggs. Biol Reprod 53:692–699

    Article  CAS  PubMed  Google Scholar 

  • Negishi T, Takada T, Kawai N, Nishida H (2007) Localized PEM mRNA and protein are involved in cleavage-plane orientation and unequal cell divisions in ascidians. Curr Biol 17:1014–1025

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982a) A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982b) A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 30:687–696

    Article  CAS  PubMed  Google Scholar 

  • Nishida H (1994) Localization of determinants for formation of the anterior-posterior axis in eggs of the ascidian Halocynthia roetzi. Development 120:3093–3104

    CAS  Google Scholar 

  • Nishida H (1996) Vegetal egg cytoplasm promotes gastrulation and is responsible for specification of vegetal blastomeres in embryos of the ascidian Halocynthis roretzi. Development 122:1271–1279

    CAS  PubMed  Google Scholar 

  • Nishida H, Sawada K (2001) macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 409:724–729

    Article  CAS  PubMed  Google Scholar 

  • Nishikata T, Hibino T, Nishida H (1999) The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. Dev Biol 209:72–85

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama T, Yoshizaki N, Kishimoto T, Ohsumi K (2007) Transient activation of calcineurin is essential to initiate embryonic development in Xenopus laevis. Nature 449:341–345

    Article  CAS  PubMed  Google Scholar 

  • Paix A, Yamada L, Dru P, Lecordier H, Pruliere G, Chenevert J, Satoh N, Sardet C (2009) Cortical anchorages and cell type segregations of maternal postplasmic/PEM RNAs in ascidians. Dev Biol 336:96–111

    Article  CAS  PubMed  Google Scholar 

  • Patalano S, Prulière G, Prodon F, Paix A, Dru P, Sardet C, Chenevert J (2006) The aPKC-PAR-6-PAR-3 cell polarity complex localizes to the centrosome-attracting body, a macroscopic cortical structure responsible for asymmetric divisions in the early ascidian embryo. J Cell Sci 119:1592–1603

    Article  CAS  PubMed  Google Scholar 

  • Picco V, Hudson C, Yasuo H (2007) Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 134:1491–1497

    Article  CAS  PubMed  Google Scholar 

  • Prodon F, Chenevert J, Sardet C (2006) Establishment of animal-vegetal polarity during maturation in ascidian oocytes. Dev Biol 290:297–311

    Article  CAS  PubMed  Google Scholar 

  • Prodon F, Yamada L, Shirae-Kurabayashi M, Nakamura Y, Sasakura Y (2007) Postplasmic/PEM RNAs: a class of localized maternal mRNAs with multiple roles in cell polarity and development in ascidian embryos. Dev Dyn 236:1698–1715

    Article  CAS  PubMed  Google Scholar 

  • Prodon F, Hanawa K, Nishida H (2009) Actin microfilaments guide the polarized transport of nuclear pore complexes and the cytoplasmic dispersal of Vasa mRNA during GVBD in the ascidian Halocynthia roretzi. Dev Biol 330:377–388

    Article  CAS  PubMed  Google Scholar 

  • Prodon F, Chenevert J, Hébras C, Dumollard R, Faure E, Gonzalez-Garcia F, Nishida H, Sardet C, McDougall A (2010) Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 137:211–221

    Article  Google Scholar 

  • Rauh NR, Schmidt A, Bormann J, Nigg EA, Mayer TU (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437:1048–1052

    Article  CAS  PubMed  Google Scholar 

  • Roure A, Rothbächer U, Robin F, Kalmar E, Ferone G, Lamy C, Missero C, Mueller F, Lemaire P (2007) A multicassette Gateway vector set for high throughput and comparative analyses in ciona and vertebrate embryos. PLoS One 2(9):e916

    Article  PubMed Central  PubMed  Google Scholar 

  • Russo GL, Kyozuka K, Antonazzo L, Tosti E, Dale B (1996) Maturation promoting factor in ascidian oocytes is regulated by different intracellular signals at meiosis I and II. Development 122:1995–2003

    CAS  PubMed  Google Scholar 

  • Russo GL, Bilotto S, Ciarcia G, Tosti E (2009) Phylogenetic conservation of cytostatic factor related genes in the ascidian Ciona intestinalis. Gene 429:104–111

    Article  CAS  PubMed  Google Scholar 

  • Sagata N, Watanabe N, Vande Woude GF, Ikawa Y (1989) The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342:512–518

    Article  CAS  PubMed  Google Scholar 

  • Sakairi K, Shirai H (1991) Possible MIS production by follicle cells in spontaneous oocyte maturation of the ascidian Halocynthis roretzi. Dev Growth Differ 33:155–162

    Article  CAS  Google Scholar 

  • Sardet C, Roegiers F, Dumollard R, Rouiere C, McDougall A (1998) Ca2+ waves and oscillations in eggs. Biophys Chem 72:131–140

    Article  CAS  PubMed  Google Scholar 

  • Sardet C, Paix A, Prodon P, Chenevert J (2007) From oocyte to 16-cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 236:1716–1731

    Article  CAS  PubMed  Google Scholar 

  • Sasakura Y (2007) Germline transgenesis and insertional mutagenesis in the ascidian Ciona intestinalis. Dev Dyn 236:1758–1767

    Article  CAS  PubMed  Google Scholar 

  • Satoh N (1994) Developmental biology of ascidians. Cambridge University Press, New York

    Google Scholar 

  • Satoh N (2003) The ascidian tadpole larva: comparative molecular development and genomics. Nat Rev Genet 4:285–295

    Article  CAS  PubMed  Google Scholar 

  • Satou Y, Kawashima T, Shoguchi E, Nakayama A, Satoh N (2005) An integrated database of the ascidian, Ciona intestinalis: towards functional genomics. Zoolog Sci 8:837–843

    Article  Google Scholar 

  • Sawada T-O, Schatten G (1988) Microtubules in ascidian eggs during meiosis, fertilization and mitosis. Cell Motil Cytoskeleton 9:219–230

    Article  CAS  PubMed  Google Scholar 

  • Sawada T-O, Schatten G (1989) Effects of cytoskeletal inhibitors on ooplasmic segregation and microtubule organization during fertilization and early development in the ascidian Molgula occidentalis. Dev Biol 132:331–342

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, Mayer TU (2005) Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev 19:502–513

    Article  CAS  PubMed  Google Scholar 

  • Schuh M, Ellenberg J (2008) A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18:1986–1992

    Article  CAS  PubMed  Google Scholar 

  • Sheng J, Kumagi A, Dunphy WG, Varshavsky A (2002) Dissection of c-MOS degron. EMBO J 21:6061–6071

    Article  CAS  PubMed  Google Scholar 

  • Shibuya EK, Boulton TG, Cobb MH, Ruderman JV (1992) Activation of p42 MAP kinase and the release of oocytes from cell cycle arrest. EMBO J 11:3963–3975

    CAS  PubMed  Google Scholar 

  • Shimauchi Y, Yasuo H, Satoh N (1997) Autonomy of ascidian fork head/HNF-3 gene expression. Mech Dev 69:143–154

    Article  CAS  PubMed  Google Scholar 

  • Shoji S, Yoshida N, Amanai M, Ohgishi M, Fukui T, Fujimoto S, Nakano Y, Kajikawa E, Perry AC (2006) Mammalian Emi2 mediates cytostatic arrest and transduces the signal for meiotic exit via Cdc20. EMBO J 25:834–845

    Article  CAS  PubMed  Google Scholar 

  • Sierro N, Kusakabe T, Park KJ, Yamashita R, Kinoshita K, Nakai K (2006) DBTGR: a database of tunicate promoters and their regulatory elements. Nucleic Acids Res 34:D552–D555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374

    Article  CAS  PubMed  Google Scholar 

  • Silvestre F, Gallo A, Cuomo A, Covino T, Tosti E (2010) Role of cyclic AMP in the maturation of Ciona intestinalis oocytes. Zygote Sep 2:1–7 [Epub ahead of print]

    Google Scholar 

  • Singh TR, Tsagkogeorga G, Delsuc F, Blanquart S, Shenkar N, Loya Y, Douzery EJ, Huchon D (2009) Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. BMC Genomics 10:534

    Article  PubMed Central  PubMed  Google Scholar 

  • Sobral D, Tassy O, Lemaire P (2009) Highly divergent gene expression programs can lead to similar chordate larval body plans. Curr Biol 19:2014–2019

    Article  CAS  PubMed  Google Scholar 

  • Sohaskey ML, Ferrell JE Jr (1999) Distinct, constitutively active MAPK phosphatases fucntion in xenopus oocytes: implications for p42 MAPK regulation in vivo. Mol Biol Cell 10:3729–3743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Speksnijder JE, Corson W, Sardet C, Jaffe LF (1989a) Free calcium pulses follow fertilisation in the ascidian egg. Dev Biol 135:182–190

    Article  CAS  PubMed  Google Scholar 

  • Speksnijder JE, Jaffe LF, Sardet C (1989b) Polarity of sperm entry in the ascidian egg. Dev Biol 133:180–184

    Article  CAS  PubMed  Google Scholar 

  • Speksnijder JE, Terasaki M, Hage WJ, Jaffe LF, Sardet C (1993) Polarity and reorganisation of the endoplasmic reticulum during fertilisation and ooplasmic segregation in the ascidian egg. J Cell Biol 120:1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Stricker SA (1999) Comparative biology of calcium signaling during fertilisation and egg activation in animals. Dev Biol 211:157–176

    Article  CAS  PubMed  Google Scholar 

  • Stricker SA, Smythe TL (2001) 5-HT causes an increase in cAMP that stimulates, rather than inhibits, oocyte maturation in marine nemertean worms. Development 128:1415–1427

    CAS  PubMed  Google Scholar 

  • Swalla BJ (1993) Mechanisms of gastrulation and tail formation in ascidians. Microsc Res Tech 26:274–284

    Article  CAS  PubMed  Google Scholar 

  • Swalla BJ, Badgett MR, Jeffery WR (1991) Identification of a cytoskeletal protein localized in the myoplasm of ascidian eggs: localization is modified during anural development. Development 111:425–436

    CAS  PubMed  Google Scholar 

  • Tachibana K, Machida T, Nomura Y, Kishimoto T (1997) MAP kinase links the fertilization signal transduction pathway to the G1/S-phase transition in starfish eggs. EMBO J 16:4333–4339

    Article  CAS  PubMed  Google Scholar 

  • Tassy O, Daian F, Hudson C, Bertrand V, Lemaire P (2006) A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis. Curr Biol 16:345–358

    Article  CAS  PubMed  Google Scholar 

  • Verlhac MH, Kubiak JZ, Weber M, Geraud G, Colledge WH, Evans MJ, Maro B (1996) Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122:815–822

    CAS  PubMed  Google Scholar 

  • Waddle JA, Cooper JA, Waterston RH (1994) Transient localized accumulation of actin in Caenorhabditis elegans blastomeres with oriented asymmetric divisions. Development 120:2317–2328

    CAS  PubMed  Google Scholar 

  • Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86:25–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada L (2006) Embryonic expression profiles and conserved localization mechanisms of pem/postplasmic mRNAs of two species of ascidian, Ciona intestinalis and Ciona savignyi. Dev Biol 296:524–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the ANR (08-BLAN-0136-02), ARC, and ATIP for financial support. We would also like to thank Patrick Chang and Mark Levasseur for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alex McDougall or Remi Dumollard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McDougall, A., Chenevert, J., Lee, K.W., Hebras, C., Dumollard, R. (2011). Cell Cycle in Ascidian Eggs and Embryos. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_8

Download citation

Publish with us

Policies and ethics