Skip to main content

The Role of RanGTP Gradient in Vertebrate Oocyte Maturation

  • Chapter
  • First Online:
Cell Cycle in Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Arish A, Kalab P, Ng-Kamstra J, Weis K, Fradin C (2009) Spatial distribution and mobility of the Ran GTPase in live interphase cells. Biophys J 97:2164–2178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnaoutov A, Dasso M (2003) The Ran GTPase regulates kinetochore function. Dev Cell 5:99–111

    CAS  PubMed  Google Scholar 

  • Arnaoutov A, Dasso M (2005) Ran-GTP regulates kinetochore attachment in somatic cells. Cell Cycle 4:1161–1165

    CAS  PubMed  Google Scholar 

  • Arnaoutov A, Azuma Y, Ribbeck K, Joseph J, Boyarchuk Y, Karpova T, McNally J, Dasso M (2005) Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nat Cell Biol 7:626–632

    CAS  PubMed  Google Scholar 

  • Askjaer P, Galy V, Hannak E, Mattaj IW (2002) Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. Mol Biol Cell 13:4355–4370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Athale CA, Dinarina A, Mora-Coral M, Pugieux C, Nedelec F, Karsenti E (2008) Regulation of microtubule dynamics by reaction cascades around chromosomes. Science 322:1243–1247

    CAS  PubMed  Google Scholar 

  • Azoury J, Verlhac MH, Dumont J (2009) Actin filaments: key players in the control of asymmetric divisions in mouse oocytes. Biol Cell 101:69–76

    CAS  PubMed  Google Scholar 

  • Bastiaens P, Caudron M, Niethammer P, Karsenti E (2006) Gradients in the self-organization of the mitotic spindle. Trends Cell Biol 16:125–134

    CAS  PubMed  Google Scholar 

  • Bayliss R, Sardon T, Vernos I, Conti E (2003) Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12:851–862

    CAS  PubMed  Google Scholar 

  • Bednenko J, Cingolani G, Gerace L (2003) Nucleocytoplasmic transport: navigating the channel. Traffic 4:127–135

    CAS  PubMed  Google Scholar 

  • Bilbao-Cortes D, Hetzer M, Langst G, Becker PB, Mattaj IW (2002) Ran binds to chromatin by two distinct mechanisms. Curr Biol 12:1151–1156

    CAS  PubMed  Google Scholar 

  • Binelli M, Murphy BD (2010) Coordinated regulation of follicle development by germ and somatic cells. Reprod Fertil Dev 22:1–12

    CAS  PubMed  Google Scholar 

  • Bischoff FR, Gorlich D (1997) RanBP1 is crucial for the release of RanGTP from importin beta-related nuclear transport factors. FEBS Lett 419:249–254

    CAS  PubMed  Google Scholar 

  • Blower MD, Nachury M, Heald R, Weis K (2005) A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121:223–234

    CAS  PubMed  Google Scholar 

  • Bohnsack MT, Stuven T, Kuhn C, Cordes VC, Gorlich D (2006) A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes. Nat Cell Biol 8:257–263

    CAS  PubMed  Google Scholar 

  • Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N (2010) Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 190:807–822

    CAS  PubMed  Google Scholar 

  • Bono F, Cook AG, Grunwald M, Ebert J, Conti E (2010) Nuclear import mechanism of the EJC component Mago-Y14 revealed by structural studies of importin 13. Mol Cell 37:211–222

    CAS  PubMed  Google Scholar 

  • Brown KS, Blower MD, Maresca TJ, Grammer TC, Harland RM, Heald R (2007) Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. J Cell Biol 176:765–770

    CAS  PubMed  Google Scholar 

  • Brunet S, Maro B (2005) Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction 130:801–811

    CAS  PubMed  Google Scholar 

  • Brunet S, Polanski Z, Verlhac MH, Kubiak JZ, Maro B (1998) Bipolar meiotic spindle formation without chromatin. Curr Biol 8:1231–1234

    CAS  PubMed  Google Scholar 

  • Brunet S, Maria AS, Guillaud P, Dujardin D, Kubiak JZ, Maro B (1999) Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J Cell Biol 146:1–12

    CAS  PubMed  Google Scholar 

  • Brunet S, Dumont J, Lee KW, Kinoshita K, Hikal P, Gruss OJ, Maro B, Verlhac MH (2008) Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS ONE 3:e3338

    PubMed Central  PubMed  Google Scholar 

  • Busch A, Kiel T, Heupel WM, Wehnert M, Hubner S (2009) Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants. Exp Cell Res 315:2373–2385

    CAS  PubMed  Google Scholar 

  • Calarco-Gillam PD, Siebert MC, Hubble R, Mitchison T, Kirschner M (1983) Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell 35:621–629

    CAS  PubMed  Google Scholar 

  • Carabatsos MJ, Combelles CM, Messinger SM, Albertini DF (2000) Sorting and reorganization of centrosomes during oocyte maturation in the mouse. Microsc Res Tech 49:435–444

    CAS  PubMed  Google Scholar 

  • Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400:178–181

    CAS  PubMed  Google Scholar 

  • Carmody SR, Wente SR (2009) mRNA nuclear export at a glance. J Cell Sci 122:1933–1937

    CAS  PubMed  Google Scholar 

  • Caudron M, Bunt G, Bastiaens P, Karsenti E (2005) Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309:1373–1376

    CAS  PubMed  Google Scholar 

  • Chen MS, Hurov J, White LS, Woodford-Thomas T, Piwnica-Worms H (2001) Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase. Mol Cell Biol 21:3853–3861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen T, Muratore TL, Schaner-Tooley CE, Shabanowitz J, Hunt DF, Macara IG (2007) N-terminal alpha-methylation of RCC1 is necessary for stable chromatin association and normal mitosis. Nat Cell Biol 9:596–603

    CAS  PubMed  Google Scholar 

  • Chiang T, Duncan FE, Schindler K, Schultz RM, Lampson MA (2010) Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr Biol 20:1522–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciciarello M, Roscioli E, Di Fiore B, Di Francesco L, Sobrero F, Bernard D, Mangiacasale R, Harel A, Schinina ME, Lavia P (2010) Nuclear reformation after mitosis requires downregulation of the Ran GTPase effector RanBP1 in mammalian cells. Chromosoma 119:651–668

    CAS  PubMed  Google Scholar 

  • Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399:221–229

    CAS  PubMed  Google Scholar 

  • Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, Kellis M, Lindblad-Toh K, Lander ES (2007) Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci USA 104:19428–19433

    CAS  PubMed  Google Scholar 

  • Clarke PR (2005) Cell biology. A gradient signal orchestrates the mitotic spindle. Science 309:1334–1335

    CAS  PubMed  Google Scholar 

  • Clausen T, Ribbeck K (2007) Self-organization of anastral spindles by synergy of dynamic instability, autocatalytic microtubule production, and a spatial signaling gradient. PLoS ONE 2:e244

    PubMed Central  PubMed  Google Scholar 

  • D’Angelo MA, Raices M, Panowski SH, Hetzer MW (2009) Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136:284–295

    PubMed Central  PubMed  Google Scholar 

  • Dallol A, Hesson LB, Matallanas D, Cooper WN, O’Neill E, Maher ER, Kolch W, Latif F (2009) RAN GTPase is a RASSF1A effector involved in controlling microtubule organization. Curr Biol 19:1227–1232

    CAS  PubMed  Google Scholar 

  • Dehmelt L, Bastiaens PI (2010) Spatial organization of intracellular communication: insights from imaging. Nat Rev Mol Cell Biol 11:440–452

    CAS  PubMed  Google Scholar 

  • Deng M, Suraneni P, Schultz RM, Li R (2007) The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev Cell 12:301–308

    CAS  PubMed  Google Scholar 

  • Di Fiore B, Ciciarello M, Mangiacasale R, Palena A, Tassin AM, Cundari E, Lavia P (2003) Mammalian RanBP1 regulates centrosome cohesion during mitosis. J Cell Sci 116:3399–3411

    PubMed  Google Scholar 

  • Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YN, Margolis B, Martens JR, Verhey KJ (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat Cell Biol 12:703–710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobrzyński M, Bernatowicz P, Kloc M, Kubiak JZ (2011) Evolution of bet-hedging-like mechanisms in cell cycle and embryo development stimulated by weak linkage of stochastic processes. In: Kubiak JZ (ed) Cell cycle in development. Results and problem in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • Dogterom M, Felix MA, Guet CC, Leibler S (1996) Influence of M-phase chromatin on the anisotropy of microtubule asters. J Cell Biol 133:125–140

    CAS  PubMed  Google Scholar 

  • Dumont J, Million K, Sunderland K, Rassinier P, Lim H, Leader B, Verlhac MH (2007a) Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev Biol 301:254–265

    CAS  PubMed  Google Scholar 

  • Dumont J, Petri S, Pellegrin F, Terret ME, Bohnsack MT, Rassinier P, Georget V, Kalab P, Gruss OJ, Verlhac MH (2007b) A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176:295–305

    CAS  PubMed  Google Scholar 

  • Duncan FE, Chiang T, Schultz RM, Lampson MA (2009) Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol Reprod 81:768–776

    CAS  PubMed  Google Scholar 

  • England JR, Huang J, Jennings MJ, Makde RD, Tan S (2010) RCC1 uses a conformationally diverse loop region to interact with the nucleosome: a model for the RCC1-nucleosome complex. J Mol Biol 398:518–529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eppig JJ, O’Brien MJ (1996) Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 54:197–207

    CAS  PubMed  Google Scholar 

  • Eyers PA, Erikson E, Chen LG, Maller JL (2003) A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 13:691–697

    CAS  PubMed  Google Scholar 

  • Feng Y, Yuan JH, Maloid SC, Fisher R, Copeland TD, Longo DL, Conrads TP, Veenstra TD, Ferris A, Hughes S, Dimitrov DS, Ferris DK (2006) Polo-like kinase 1-mediated phosphorylation of the GTP-binding protein Ran is important for bipolar spindle formation. Biochem Biophys Res Commun 349:144–152

    CAS  PubMed  Google Scholar 

  • Frey S, Gorlich D (2009) FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties. EMBO J 28:2554–2567

    CAS  PubMed  Google Scholar 

  • Frey S, Richter RP, Gorlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314:815–817

    CAS  PubMed  Google Scholar 

  • Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60:1659–1688

    CAS  PubMed  Google Scholar 

  • Gavet O, Pines J (2010a) Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol 189:247–259

    CAS  PubMed  Google Scholar 

  • Gavet O, Pines J (2010b) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18:533–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giet R, Uzbekov R, Cubizolles F, Le Guellec K, Prigent C (1999) The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 274:15005–15013

    CAS  PubMed  Google Scholar 

  • Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA (2004) Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 14:505–514

    CAS  PubMed  Google Scholar 

  • Gontan C, Guttler T, Engelen E, Demmers J, Fornerod M, Grosveld FG, Tibboel D, Gorlich D, Poot RA, Rottier RJ (2009) Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors. J Cell Biol 185:27–34

    CAS  PubMed  Google Scholar 

  • Goodman B, Zheng Y (2006) Mitotic spindle morphogenesis: Ran on the microtubule cytoskeleton and beyond. Biochem Soc Trans 34:716–721

    CAS  PubMed  Google Scholar 

  • Gordo AC, He CL, Smith S, Fissore RA (2001) Mitogen activated protein kinase plays a significant role in metaphase II arrest, spindle morphology, and maintenance of maturation promoting factor activity in bovine oocytes. Mol Reprod Dev 59:106–114

    CAS  PubMed  Google Scholar 

  • Gorlich D, Seewald MJ, Ribbeck K (2003) Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J 22:1088–1100

    PubMed  Google Scholar 

  • Goshima G, Kimura A (2010) New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr Opin Cell Biol 22:44–49

    CAS  PubMed  Google Scholar 

  • Groen AC, Cameron LA, Coughlin M, Miyamoto DT, Mitchison TJ, Ohi R (2004) XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr Biol 14:1801–1811

    CAS  PubMed  Google Scholar 

  • Gruss OJ, Vernos I (2004) The mechanism of spindle assembly: functions of Ran and its target TPX2. J Cell Biol 166:949–955

    CAS  PubMed  Google Scholar 

  • Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104:83–93

    CAS  PubMed  Google Scholar 

  • Gruss OJ, Wittmann M, Yokoyama H, Pepperkok R, Kufer T, Sillje H, Karsenti E, Mattaj IW, Vernos I (2002) Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 4:871–879

    CAS  PubMed  Google Scholar 

  • Guarguaglini G, Renzi L, D’Ottavio F, Di Fiore B, Casenghi M, Cundari E, Lavia P (2000) Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ 11:455–465

    CAS  PubMed  Google Scholar 

  • Gueth-Hallonet C, Antony C, Aghion J, Santa-Maria A, Lajoie-Mazenc I, Wright M, Maro B (1993) Gamma-tubulin is present in acentriolar MTOCs during early mouse development. J Cell Sci 105(Pt 1):157–166

    CAS  PubMed  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    CAS  PubMed  Google Scholar 

  • Hassold T, Hunt P (2009) Maternal age and chromosomally abnormal pregnancies: what we know and what we wish we knew. Curr Opin Pediatr 21:703–708

    PubMed Central  PubMed  Google Scholar 

  • Hetzer MW (2010) The nuclear envelope. Cold Spring Harb Perspect Biol 2:a000539

    PubMed  Google Scholar 

  • Hetzer MW, Wente SR (2009) Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell 17:606–616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hintersteiner M, Ambrus G, Bednenko J, Schmied M, Knox AJ, Meisner NC, Gstach H, Seifert JM, Singer EL, Gerace L, Auer M (2010) Identification of a small molecule inhibitor of importin beta mediated nuclear import by confocal on-bead screening of tagged one-bead one-compound libraries. ACS Chem Biol 5:967–979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hitakomate E, Hood FE, Sanderson HS, Clarke PR (2010) The methylated N-terminal tail of RCC1 is required for stabilisation of its interaction with chromatin by Ran in live cells. BMC Cell Biol 11:43

    PubMed Central  PubMed  Google Scholar 

  • Holt JE, Weaver J, Jones KT (2010) Spatial regulation of APCCdh1-induced cyclin B1 degradation maintains G2 arrest in mouse oocytes. Development 137:1297–1304

    CAS  PubMed  Google Scholar 

  • Hood FE, Clarke PR (2007) RCC1 isoforms differ in their affinity for chromatin, molecular interactions and regulation by phosphorylation. J Cell Sci 120:3436–3445

    CAS  PubMed  Google Scholar 

  • Hu J, Wang F, Yuan Y, Zhu X, Wang Y, Zhang Y, Kou Z, Wang S, Gao S (2010) The novel importin-alpha family member KPNA7, is required for normal fertility and fecundity in the mouse. J Biol Chem 285:33113–33122

    CAS  PubMed  Google Scholar 

  • Huber J, Cronshagen U, Kadokura M, Marshallsay C, Wada T, Sekine M, Luhrmann R (1998) Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 17:4114–4126

    CAS  PubMed  Google Scholar 

  • Huenniger K, Kramer A, Soom M, Chang I, Kohler M, Depping R, Kehlenbach RH, Kaether C (2010) Notch1 signaling is mediated by importins alpha 3, 4, and 7. Cell Mol Life Sci 67:3187–3196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchins JR, Moore WJ, Hood FE, Wilson JS, Andrews PD, Swedlow JR, Clarke PR (2004) Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis. Curr Biol 14:1099–1104

    CAS  PubMed  Google Scholar 

  • Illingworth C, Pirmadjid N, Serhal P, Howe K, Fitzharris G (2010) MCAK regulates chromosome alignment but is not necessary for preventing aneuploidy in mouse oocyte meiosis I. Development 137:2133–2138

    CAS  PubMed  Google Scholar 

  • Jakel S, Albig W, Kutay U, Bischoff FR, Schwamborn K, Doenecke D, Gorlich D (1999) The importin beta/importin 7 heterodimer is a functional nuclear import receptor for histone H1. EMBO J 18:2411–2423

    CAS  PubMed  Google Scholar 

  • Jang YJ, Ji JH, Ahn JH, Hoe KL, Won M, Im DS, Chae SK, Song S, Yoo HS (2004) Polo-box motif targets a centrosome regulator, RanGTPase. Biochem Biophys Res Commun 325:257–264

    CAS  PubMed  Google Scholar 

  • Joseph J, Tan SH, Karpova TS, McNally JG, Dasso M (2002) SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 156:595–602

    CAS  PubMed  Google Scholar 

  • Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, Walter JC, Livingston DM (2006) The BRCA1/BARD1 heterodimer modulates Ran-dependent mitotic spindle assembly. Cell 127:539–552

    CAS  PubMed  Google Scholar 

  • Kalab P, Heald R (2008) The RanGTP gradient – a GPS for the mitotic spindle. J Cell Sci 121:1577–1586

    CAS  PubMed  Google Scholar 

  • Kalab P, Pralle A (2008) Chapter 21: quantitative fluorescence lifetime imaging in cells as a tool to design computational models of ran-regulated reaction networks. Methods Cell Biol 89:541–568

    CAS  PubMed  Google Scholar 

  • Kalab P, Soderholm J (2010) The design of Forster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase. Methods 51:220–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalab P, Pu RT, Dasso M (1999) The Ran GTPase regulates mitotic spindle assembly. Curr Biol 9:481–484

    CAS  PubMed  Google Scholar 

  • Kalab P, Weis K, Heald R (2002) Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295:2452–2456

    CAS  PubMed  Google Scholar 

  • Kalab P, Pralle A, Isacoff EY, Heald R, Weis K (2006) Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440:697–701

    CAS  PubMed  Google Scholar 

  • Karsenti E, Vernos I (2001) The mitotic spindle: a self-made machine. Science 294:543–547

    CAS  PubMed  Google Scholar 

  • Karsenti E, Newport J, Kirschner M (1984) Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J Cell Biol 99:47s–54s

    CAS  PubMed  Google Scholar 

  • Kelley JB, Paschal BM (2007) Hyperosmotic stress signaling to the nucleus disrupts the Ran gradient and the production of RanGTP. Mol Biol Cell 18:4365–4376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelley JB, Talley AM, Spencer A, Gioeli D, Paschal BM (2010) Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors. BMC Cell Biol 11:63

    PubMed Central  PubMed  Google Scholar 

  • Kelly AE, Sampath SC, Maniar TA, Woo EM, Chait BT, Funabiki H (2007) Chromosomal enrichment and activation of the aurora B pathway are coupled to spatially regulate spindle assembly. Dev Cell 12:31–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keryer G, Di Fiore B, Celati C, Lechtreck KF, Mogensen M, Delouvee A, Lavia P, Bornens M, Tassin AM (2003) Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity. Mol Biol Cell 14:4260–4271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SY, Ryu SJ, Ahn HJ, Choi HR, Kang HT, Park SC (2010) Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression. Biochem Biophys Res Commun 391:28–32

    CAS  PubMed  Google Scholar 

  • Kinoshita K, Noetzel TL, Pelletier L, Mechtler K, Drechsel DN, Schwager A, Lee M, Raff JW, Hyman AA (2005) Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 170:1047–1055

    CAS  PubMed  Google Scholar 

  • Knauer SK, Bier C, Habtemichael N, Stauber RH (2006) The Survivin-Crm1 interaction is essential for chromosomal passenger complex localization and function. EMBO Rep 7:1259–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koffa MD, Casanova CM, Santarella R, Kocher T, Wilm M, Mattaj IW (2006) HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 16:743–754

    CAS  PubMed  Google Scholar 

  • Kufer TA, Sillje HH, Korner R, Gruss OJ, Meraldi P, Nigg EA (2002) Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 158:617–623

    CAS  PubMed  Google Scholar 

  • Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M (2002) Subcellular localization of the yeast proteome. Genes Dev 16:707–719

    CAS  PubMed  Google Scholar 

  • Kutay U, Hetzer MW (2008) Reorganization of the nuclear envelope during open mitosis. Curr Opin Cell Biol 20:669–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kutay U, Izaurralde E, Bischoff FR, Mattaj IW, Gorlich D (1997) Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J 16:1153–1163

    CAS  PubMed  Google Scholar 

  • la Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536

    PubMed  Google Scholar 

  • Lau CK, Delmar VA, Chan RC, Phung Q, Bernis C, Fichtman B, Rasala BA, Forbes DJ (2009) Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly. Mol Biol Cell 20:4043–4058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leader B, Leder P (2000) Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech Dev 93:221–231

    CAS  PubMed  Google Scholar 

  • Leader B, Lim H, Carabatsos MJ, Harrington A, Ecsedy J, Pellman D, Maas R, Leder P (2002) Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat Cell Biol 4:921–928

    CAS  PubMed  Google Scholar 

  • Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, Watanabe Y (2008) Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 10:42–52

    CAS  PubMed  Google Scholar 

  • Lee JY, Lee HS, Wi SJ, Park KY, Schmit AC, Pai HS (2009) Dual functions of Nicotiana benthamiana Rae1 in interphase and mitosis. Plant J 59:278–291

    CAS  PubMed  Google Scholar 

  • Lefebvre C, Terret ME, Djiane A, Rassinier P, Maro B, Verlhac MH (2002) Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J Cell Biol 157:603–613

    CAS  PubMed  Google Scholar 

  • Lenart P, Ellenberg J (2003) Nuclear envelope dynamics in oocytes: from germinal vesicle breakdown to mitosis. Curr Opin Cell Biol 15:88–95

    CAS  PubMed  Google Scholar 

  • Lenart P, Rabut G, Daigle N, Hand AR, Terasaki M, Ellenberg J (2003) Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes. J Cell Biol 160:1055–1068

    CAS  PubMed  Google Scholar 

  • LeRoy PJ, Hunter JJ, Hoar KM, Burke KE, Shinde V, Ruan J, Bowman D, Galvin K, Ecsedy JA (2007) Localization of human TACC3 to mitotic spindles is mediated by phosphorylation on Ser558 by Aurora A: a novel pharmacodynamic method for measuring Aurora A activity. Cancer Res 67:5362–5370

    CAS  PubMed  Google Scholar 

  • Li HY, Zheng Y (2004) Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells. Genes Dev 18:512–527

    CAS  PubMed  Google Scholar 

  • Li HY, Wirtz D, Zheng Y (2003) A mechanism of coupling RCC1 mobility to RanGTP production on the chromatin in vivo. J Cell Biol 160:635–644

    CAS  PubMed  Google Scholar 

  • Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MP, Tessarollo L, Donovan PJ (2002) Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet 30:446–449

    CAS  PubMed  Google Scholar 

  • Lister LM, Kouznetsova A, Hyslop LA, Kalleas D, Pace SL, Barel JC, Nathan A, Floros V, Adelfalk C, Watanabe Y, Jessberger R, Kirkwood TB, Hoog C, Herbert M (2010) Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and sgo2. Curr Biol 20:1511–1521

    CAS  PubMed  Google Scholar 

  • Liu J, Grimison B, Maller JL (2007) New insight into metaphase arrest by cytostatic factor: from establishment to release. Oncogene 26:1286–1289

    CAS  PubMed  Google Scholar 

  • Liu D, Vleugel M, Backer CB, Hori T, Fukagawa T, Cheeseman IM, Lampson MA (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188:809–820

    CAS  PubMed  Google Scholar 

  • Longo FJ, Chen DY (1985) Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev Biol 107:382–394

    CAS  PubMed  Google Scholar 

  • Lonhienne TG, Forwood JK, Marfori M, Robin G, Kobe B, Carroll BJ (2009) Importin-beta is a GDP-to-GTP exchange factor of Ran: implications for the mechanism of nuclear import. J Biol Chem 284:22549–22558

    CAS  PubMed  Google Scholar 

  • Lott K, Bhardwaj A, Mitrousis G, Pante N, Cingolani G (2010) The importin beta binding domain modulates the avidity of importin beta for the nuclear pore complex. J Biol Chem 285:13769–13780

    CAS  PubMed  Google Scholar 

  • Lowe AR, Siegel JJ, Kalab P, Siu M, Weis K, Liphardt JT (2010) Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467:600–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ly TK, Wang J, Pereira R, Rojas KS, Peng X, Feng Q, Cerione RA, Wilson KF (2010) Activation of the Ran GTPase is subject to growth factor regulation and can give rise to cellular transformation. J Biol Chem 285:5815–5826

    CAS  PubMed  Google Scholar 

  • Ma N, Tulu US, Ferenz NP, Fagerstrom C, Wilde A, Wadsworth P (2010) Poleward transport of TPX2 in the mammalian mitotic spindle requires dynein, Eg5, and microtubule flux. Mol Biol Cell 21:979–988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makde RD, England JR, Yennawar HP, Tan S (2010) Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467:562–566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Reprod 72:2–13

    CAS  PubMed  Google Scholar 

  • Marangos P, Carroll J (2004) The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes. Reproduction 128:153–162

    CAS  PubMed  Google Scholar 

  • Maresca TJ, Groen AC, Gatlin JC, Ohi R, Mitchison TJ, Salmon ED (2009) Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr Biol 19:1210–1215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maro B, Johnson MH, Webb M, Flach G (1986) Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane. J Embryol Exp Morphol 92:11–32

    CAS  PubMed  Google Scholar 

  • Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Kirmeyer S, Munson ML (2007) Births: final data for 2005. Natl Vital Stat Rep 56:1–103

    PubMed  Google Scholar 

  • Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457–1470

    CAS  PubMed  Google Scholar 

  • Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140:499–509

    CAS  PubMed  Google Scholar 

  • Mitrousis G, Olia AS, Walker-Kopp N, Cingolani G (2008) Molecular basis for the recognition of snurportin 1 by importin beta. J Biol Chem 283:7877–7884

    CAS  PubMed  Google Scholar 

  • Mohr D, Frey S, Fischer T, Guttler T, Gorlich D (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28:2541–2553

    CAS  PubMed  Google Scholar 

  • Moore JD (2001) The Ran-GTPase and cell-cycle control. Bioessays 23:77–85

    CAS  PubMed  Google Scholar 

  • Moore JD, Yang J, Truant R, Kornbluth S (1999) Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol 144:213–224

    CAS  PubMed  Google Scholar 

  • Mori D, Yano Y, Toyo-oka K, Yoshida N, Yamada M, Muramatsu M, Zhang D, Saya H, Toyoshima YY, Kinoshita K, Wynshaw-Boris A, Hirotsune S (2007) NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol Cell Biol 27:352–367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104:95–106

    CAS  PubMed  Google Scholar 

  • Nemergut ME, Mizzen CA, Stukenberg T, Allis CD, Macara IG (2001) Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science 292:1540–1543

    CAS  PubMed  Google Scholar 

  • Nishijima H, Seki T, Nishitani H, Nishimoto T (2000) Premature chromatin condensation caused by loss of RCC1. Prog Cell Cycle Res 4:145–156

    CAS  PubMed  Google Scholar 

  • Nishimoto T, Ajiro K, Hirata M, Yamashita K, Sekiguchi M (1985) The induction of chromosome condensation in tsBN2, a temperature-sensitive mutant of BHK21, inhibited by the calmodulin antagonist, W-7. Exp Cell Res 156:351–358

    CAS  PubMed  Google Scholar 

  • O’Connell CB, Loncarek J, Kalab P, Khodjakov A (2009) Relative contributions of chromatin and kinetochores to mitotic spindle assembly. J Cell Biol 187:43–51

    PubMed  Google Scholar 

  • Oh JS, Han SJ, Conti M (2010) Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. J Cell Biol 188:199–207

    CAS  PubMed  Google Scholar 

  • Ohba T, Nakamura M, Nishitani H, Nishimoto T (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284:1356–1358

    CAS  PubMed  Google Scholar 

  • Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, Alves Fde L, Wood L, Chen ZA, Platani M, Fischer L, Hudson DF, Ponting CP, Fukagawa T, Earnshaw WC, Rappsilber J (2010) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142:810–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan H, Ma P, Zhu W, Schultz RM (2008) Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev Biol 316:397–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pelech S, Jelinkova L, Susor A, Zhang H, Shi X, Pavlok A, Kubelka M, Kovarova H (2008) Antibody microarray analyses of signal transduction protein expression and phosphorylation during porcine oocyte maturation. J Proteome Res 7:2860–2871

    CAS  PubMed  Google Scholar 

  • Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6:187–198

    CAS  PubMed  Google Scholar 

  • Petosa C, Schoehn G, Askjaer P, Bauer U, Moulin M, Steuerwald U, Soler-Lopez M, Baudin F, Mattaj IW, Muller CW (2004) Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell 16:761–775

    CAS  PubMed  Google Scholar 

  • Pirino G, Wescott MP, Donovan PJ (2009) Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle 8:665–670

    CAS  PubMed  Google Scholar 

  • Platani M, Santarella-Mellwig R, Posch M, Walczak R, Swedlow JR, Mattaj IW (2009) The Nup107-160 nucleoporin complex promotes mitotic events via control of the localization state of the chromosome passenger complex. Mol Biol Cell 20:5260–5275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quensel C, Friedrich B, Sommer T, Hartmann E, Kohler M (2004) In vivo analysis of importin alpha proteins reveals cellular proliferation inhibition and substrate specificity. Mol Cell Biol 24:10246–10255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reis A, Chang HY, Levasseur M, Jones KT (2006) APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nat Cell Biol 8:539–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren Y, Seo HS, Blobel G, Hoelz A (2010) Structural and functional analysis of the interaction between the nucleoporin Nup98 and the mRNA export factor Rae1. Proc Natl Acad Sci USA 107:10406–10411

    CAS  PubMed  Google Scholar 

  • Renault L, Kuhlmann J, Henkel A, Wittinghofer A (2001) Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105:245–255

    CAS  PubMed  Google Scholar 

  • Revenkova E, Herrmann K, Adelfalk C, Jessberger R (2010) Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr Biol 20:1529–1533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ribbeck K, Gorlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20:1320–1330

    CAS  PubMed  Google Scholar 

  • Ribbeck K, Lipowsky G, Kent HM, Stewart M, Gorlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17:6587–6598

    CAS  PubMed  Google Scholar 

  • Saitoh H, Sparrow DB, Shiomi T, Pu RT, Nishimoto T, Mohun TJ, Dasso M (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8:121–124

    CAS  PubMed  Google Scholar 

  • Salina D, Enarson P, Rattner JB, Burke B (2003) Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J Cell Biol 162:991–1001

    CAS  PubMed  Google Scholar 

  • Sardon T, Peset I, Petrova B, Vernos I (2008) Dissecting the role of Aurora A during spindle assembly. EMBO J 27:2567–2579

    CAS  PubMed  Google Scholar 

  • Saskova A, Solc P, Baran V, Kubelka M, Schultz RM, Motlik J (2008) Aurora kinase A controls meiosis I progression in mouse oocytes. Cell Cycle 7:2368–2376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaner Tooley CE, Petkowski JJ, Muratore-Schroeder TL, Balsbaugh JL, Shabanowitz J, Sabat M, Minor W, Hunt DF, Macara IG (2010) NRMT is an alpha-N-methyltransferase that methylates RCC1 and retinoblastoma protein. Nature 466:1125–1128

    CAS  Google Scholar 

  • Schuh M, Ellenberg J (2007) Self-Organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–498

    CAS  PubMed  Google Scholar 

  • Schuh M, Ellenberg J (2008) A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18:1986–1992

    CAS  PubMed  Google Scholar 

  • Seki T, Yamashita K, Nishitani H, Takagi T, Russell P, Nishimoto T (1992) Chromosome condensation caused by loss of RCC1 function requires the cdc25C protein that is located in the cytoplasm. Mol Biol Cell 3:1373–1388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sillje HH, Nagel S, Korner R, Nigg EA (2006) HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16:731–742

    CAS  PubMed  Google Scholar 

  • Silverman-Gavrila RV, Wilde A (2006) Ran is required before metaphase for spindle assembly and chromosome alignment and after metaphase for chromosome segregation and spindle midbody organization. Mol Biol Cell 17:2069–2080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith A, Brownawell A, Macara IG (1998) Nuclear import of Ran is mediated by the transport factor NTF2. Curr Biol 8:1403–1406

    CAS  PubMed  Google Scholar 

  • Smith AE, Slepchenko BM, Schaff JC, Loew LM, Macara IG (2002) Systems analysis of Ran transport. Science 295:488–491

    CAS  PubMed  Google Scholar 

  • Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara-Bingen M, Weis K, Heald R (2011) Importazole, a Small Molecule Inhibitor of the Transport Receptor Importin-β. ACS Chem Biol 2011 Apr 21 [Epub ahead of print]

    Google Scholar 

  • Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski BA (2010) Reaction-diffusion systems in intracellular molecular transport and control. Angew Chem Int Ed Engl 49:4170–4198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solc P, Saskova A, Baran V, Kubelka M, Schultz RM, Motlik J (2008) CDC25A phosphatase controls meiosis I progression in mouse oocytes. Dev Biol 317:260–269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solc P, Schultz RM, Motlik J (2010) Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol Hum Reprod 16:654–664

    CAS  PubMed  Google Scholar 

  • Song L, Rape M (2010) Regulated degradation of spindle assembly factors by the anaphase-promoting complex. Mol Cell 38:369–382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart M (2006) Structural basis for the nuclear protein import cycle. Biochem Soc Trans 34:701–704

    CAS  PubMed  Google Scholar 

  • Stewart S, Fang G (2005) Anaphase-promoting complex/cyclosome controls the stability of TPX2 during mitotic exit. Mol Cell Biol 25:10516–10527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stirnimann CU, Petsalaki E, Russell RB, Muller CW (2010) WD40 proteins propel cellular networks. Trends Biochem Sci 35:565–574

    CAS  PubMed  Google Scholar 

  • Stuven T, Hartmann E, Gorlich D (2003) Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 22:5928–5940

    PubMed  Google Scholar 

  • Sun SC, Xiong B, Lu SS, Sun QY (2008) MEK1/2 is a critical regulator of microtubule assembly and spindle organization during rat oocyte meiotic maturation. Mol Reprod Dev 75:1542–1548

    CAS  PubMed  Google Scholar 

  • Sun QY, Miao YL, Schatten H (2009) Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. Cell Cycle 8:2741–2747

    CAS  PubMed  Google Scholar 

  • Szollosi D, Calarco P, Donahue RP (1972) Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci 11:521–541

    CAS  PubMed  Google Scholar 

  • Tahara K, Takagi M, Ohsugi M, Sone T, Nishiumi F, Maeshima K, Horiuchi Y, Tokai-Nishizumi N, Imamoto F, Yamamoto T, Kose S, Imamoto N (2008) Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin kid. J Cell Biol 180:493–506

    CAS  PubMed  Google Scholar 

  • Takizawa CG, Weis K, Morgan DO (1999) Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta. Proc Natl Acad Sci USA 96:7938–7943

    CAS  PubMed  Google Scholar 

  • Tejomurtula J, Lee KB, Tripurani SK, Smith GW, Yao J (2009) Role of importin alpha8, a new member of the importin alpha family of nuclear transport proteins, in early embryonic development in cattle. Biol Reprod 81:333–342

    CAS  PubMed  Google Scholar 

  • Terret ME, Lefebvre C, Djiane A, Rassinier P, Moreau J, Maro B, Verlhac MH (2003) DOC1R: a MAP kinase substrate that control microtubule organization of metaphase II mouse oocytes. Development 130:5169–5177

    CAS  PubMed  Google Scholar 

  • Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318:1412–1416

    CAS  PubMed  Google Scholar 

  • Torosantucci L, De Luca M, Guarguaglini G, Lavia P, Degrassi F (2008) Localized RanGTP accumulation promotes microtubule nucleation at kinetochores in somatic mammalian cells. Mol Biol Cell 19:1873–1882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai MY, Zheng Y (2005) Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly. Curr Biol 15:2156–2163

    CAS  PubMed  Google Scholar 

  • Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J, Prigent C, Zheng YX (2003) A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5:242–248

    CAS  PubMed  Google Scholar 

  • Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P (2006) Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol 16:536–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tunquist BJ, Maller JL (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 17:683–710

    CAS  PubMed  Google Scholar 

  • Uchida S, Kuma A, Ohtsubo M, Shimura M, Hirata M, Nakagama H, Matsunaga T, Ishizaka Y, Yamashita K (2004a) Binding of 14-3-3beta but not 14-3-3sigma controls the cytoplasmic localization of CDC25B: binding site preferences of 14-3-3 subtypes and the subcellular localization of CDC25B. J Cell Sci 117:3011–3020

    CAS  PubMed  Google Scholar 

  • Uchida S, Ohtsubo M, Shimura M, Hirata M, Nakagama H, Matsunaga T, Yoshida M, Ishizaka Y, Yamashita K (2004b) Nuclear export signal in CDC25B. Biochem Biophys Res Commun 316:226–232

    CAS  PubMed  Google Scholar 

  • Verlhac MH, Dumont J (2008) Interactions between chromosomes, microfilaments and microtubules revealed by the study of small GTPases in a big cell, the vertebrate oocyte. Mol Cell Endocrinol 282:12–17

    CAS  PubMed  Google Scholar 

  • Verlhac MH, de Pennart H, Maro B, Cobb MH, Clarke HJ (1993) MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev Biol 158:330–340

    CAS  PubMed  Google Scholar 

  • Verlhac MH, Kubiak JZ, Weber M, Geraud G, Colledge WH, Evans MJ, Maro B (1996) Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122:815–822

    CAS  PubMed  Google Scholar 

  • Verlhac MH, Lefebvre C, Guillaud P, Rassinier P, Maro B (2000) Asymmetric division in mouse oocytes: with or without Mos. Curr Biol 10:1303–1306

    CAS  PubMed  Google Scholar 

  • Wang W, Budhu A, Forgues M, Wang XW (2005) Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol 7:823–830

    CAS  PubMed  Google Scholar 

  • Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    CAS  PubMed  Google Scholar 

  • Weis K (2007) The nuclear pore complex: oily spaghetti or gummy bear? Cell 130:405–407

    CAS  PubMed  Google Scholar 

  • Welburn JP, Vleugel M, Liu D, Yates JR III, Lampson MA, Fukagawa T, Cheeseman IM (2010) Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell 38:383–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y (2001) Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 291:653–656

    CAS  PubMed  Google Scholar 

  • Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284:1359–1362

    CAS  PubMed  Google Scholar 

  • Wollman R, Cytrynbaum EN, Jones JT, Meyer T, Scholey JM, Mogilner A (2005) Efficient chromosome capture requires a bias in the “search-and-capture” process during mitotic-spindle assembly. Curr Biol 15:828–832

    CAS  PubMed  Google Scholar 

  • Wong RW (2010) Interaction between Rae1 and cohesin subunit SMC1 is required for proper spindle formation. Cell Cycle 9:198–200

    CAS  PubMed  Google Scholar 

  • Wong RW, Blobel G (2008) Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole. Proc Natl Acad Sci USA 105:15441–15445

    CAS  PubMed  Google Scholar 

  • Wong J, Fang G (2006) HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol 173:879–891

    CAS  PubMed  Google Scholar 

  • Wong J, Lerrigo R, Jang CY, Fang G (2008) Aurora A regulates the activity of HURP by controlling the accessibility of its microtubule-binding domain. Mol Biol Cell 19:2083–2091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wozniak R, Burke B, Doye V (2010) Nuclear transport and the mitotic apparatus: an evolving relationship. Cell Mol Life Sci 67:2215–2230

    CAS  PubMed  Google Scholar 

  • Wu JQ, Kornbluth S (2008) Across the meiotic divide – CSF activity in the post-Emi2/XErp1 era. J Cell Sci 121:3509–3514

    CAS  PubMed  Google Scholar 

  • Xia F, Lee CW, Altieri DC (2008) Tumor cell dependence on Ran-GTP-directed mitosis. Cancer Res 68:1826–1833

    CAS  PubMed  Google Scholar 

  • Yang JW, Lei ZL, Miao YL, Huang JC, Shi LH, OuYang YC, Sun QY, Chen DY (2007) Spindle assembly in the absence of chromosomes in mouse oocytes. Reproduction 134:731–738

    CAS  PubMed  Google Scholar 

  • Yaseen NR, Blobel G (1999) GTP hydrolysis links initiation and termination of nuclear import on the nucleoporin nup358. J Biol Chem 274:26493–26502

    CAS  PubMed  Google Scholar 

  • Yasuhara N, Shibazaki N, Tanaka S, Nagai M, Kamikawa Y, Oe S, Asally M, Kamachi Y, Kondoh H, Yoneda Y (2007) Triggering neural differentiation of ES cells by subtype switching of importin-alpha. Nat Cell Biol 9:72–79

    CAS  PubMed  Google Scholar 

  • Yokoyama H, Gruss OJ, Rybina S, Caudron M, Schelder M, Wilm M, Mattaj IW, Karsenti E (2008) Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J Cell Biol 180:867–875

    CAS  PubMed  Google Scholar 

  • Yokoyama H, Rybina S, Santarella-Mellwig R, Mattaj IW, Karsenti E (2009) ISWI is a RanGTP-dependent MAP required for chromosome segregation. J Cell Biol 187:813–829

    CAS  PubMed  Google Scholar 

  • Yu CT, Hsu JM, Lee YC, Tsou AP, Chou CK, Huang CY (2005) Phosphorylation and stabilization of HURP by Aurora-A: implication of HURP as a transforming target of Aurora-A. Mol Cell Biol 25:5789–5800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zachariae U, Grubmuller H (2008) Importin-beta: structural and dynamic determinants of a molecular spring. Structure 16:906–915

    CAS  PubMed  Google Scholar 

  • Zhang H, Saitoh H, Matunis MJ (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 22:6498–6508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Ems-McClung SC, Walczak CE (2008a) Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell 19:2752–2765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Zhang Z, Xu XY, Li XS, Yu M, Yu AM, Zong ZH, Yu BZ (2008b) Protein kinase A modulates Cdc25B activity during meiotic resumption of mouse oocytes. Dev Dyn 237:3777–3786

    CAS  PubMed  Google Scholar 

  • Zuccolo M, Alves A, Galy V, Bolhy S, Formstecher E, Racine V, Sibarita JB, Fukagawa T, Shiekhattar R, Yen T, Doye V (2007) The human Nup107–160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J 26:1853–1864

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JM acknowledges that support for work on meiotic maturation in the context of IRP IAPG #AV0Z50450515 was provided by grants 301/09/J036 (Czech Science Foundation) and ME 08030 (Ministry of Education, Youth and Sports). PK was supported by the Intramural Research Program of the Center for Cancer Research, NCI, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kaláb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaláb, P., Šolc, P., Motlík, J. (2011). The Role of RanGTP Gradient in Vertebrate Oocyte Maturation. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_12

Download citation

Publish with us

Policies and ethics