Skip to main content

Neuroreceptor Imaging Studies and the Mechanism of Action of Antipsychotic Drugs

  • Chapter
  • 176 Accesses

Abstract

Neuroimaging techniques have brought fundamental contributions to the neurosciences, allowing the study of the living human brain and the effects of the drugs in it. This is specially relevant in psychiatry, as psychosis particularly affects higher human functions such as language and emotions. PET and SPET studies not only confirmed in vitro studies correlating dopamine with antipsychotic action, but also have extended knowledge in the field. These techniques were able to link specific dopamine receptors with their localization in the brain, their affinity, and the relation with clinical effects: side effects. They also made it possible to investigate the involvement of other neurotransmitter systems, such as the serotonergic, in the mechanism of action of antipsychotic drugs. PET and SPET neuroimaging is becoming a requirement at all stages of new drug development. The study of the mechanism of action of the existent antipsychotic drugs with neuroimaging techniques is vital for the process of designing better and less toxic drugs for this devastating illness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 31:302–312

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Vinuela A, Kim JJ, Potkin SG, Bunney WE Jr, Jones EG (1993) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50:178–187

    Article  PubMed  CAS  Google Scholar 

  • Arranz MJ, Munro J, Sham P et al (1998) Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res 32:93–99

    Article  PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Bigliani V, Mulligan RS, Acton PD, Visvikis D, Ell PJ, Stephenson C, Kerwin RW, Pilowsky LS (1999) In vivo occupancy of striatal and temporal cortical D2/D3 dopamine receptors by typical antipsychotic drugs — a [123I] epidepride single photon emission tomography (SPET) study. Br J Psychiatry 175:231–238

    Article  PubMed  CAS  Google Scholar 

  • Bigliani V, Mulligan RS, Acton PD, Ohlsen RI, Pike VW, Ell PJ, Gacinovic S, Kerwin RW, Pilowsky LS (2000) Striatal and temporal cortical D2/D3 receptor occupancy by olanzapine — a 123I epidepride single photon emission tomography (SPET) study. Psychopharmacology 150:132–140

    Article  PubMed  CAS  Google Scholar 

  • Bilder RM, Goldman RS, Volavka J et al (2002) Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am J Psychiatry 159:1018–1028

    Article  PubMed  Google Scholar 

  • Bressan RA, Pilowsky LS (2000) Imaging the glutamatergic system in vivo — relevance to schizophrenia. Eur J Nucl Med 27:1723–1731

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, Erlandsson K, Jones HM, Mulligan R, Flanagan RJ, Ell PJ, Pilowsky LS (2003a) Is regionally selective D(2)/D(3) dopamine occupancy sufficient for atypical antipsychotic effect? An in vivo quantitative [(123)I]epidepride SPET study of amisulpride-treated patients. Am J Psychiatry 160:1413–1420

    Article  PubMed  Google Scholar 

  • Bressan RA, Erlandsson K, Jones HM, Mulligan RS, Ell PJ, Pilowsky LS (2003b) Optimizing limbic selective D2/D3 receptor occupancy by risperidone: a [123I]-epidepride SPET study. J Clin Psychopharmacol 23:5–14

    Article  PubMed  CAS  Google Scholar 

  • Brucke T, Roth J, Podrecka I, Strobi R, Wenger S, Asenbaum S (1992) Striatal dopamine D2 blockade by typical and atypical neuroleptics. Lancet 339:497

    Article  PubMed  CAS  Google Scholar 

  • Buckland PR, O’Donovan MC, McGuffin P (1993) Clozapine and sulpiride up-regulate dopamine D3 receptor mRNA levels. Neuropharmacology 32:901–907

    Article  PubMed  CAS  Google Scholar 

  • Burris KD, Molski TF, Xu C et al (2002) Aripiprazole, a novel antipsychotic, is a high affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389

    Article  PubMed  CAS  Google Scholar 

  • Busatto GF, Kerwin RW (1997) Perspectives on the role of serotonergic mechanisms in the pharmacology of schizophrenia. J Psychopharmacol 11:3–12

    Article  CAS  Google Scholar 

  • Busatto GF, Pilowsky LS, Costa DC, Ell PJ, Verhoeff NPLG, Kerwin RW (1995) Dopamine D2 receptor blockade in vivo with the novel antipsychotics risperidone and remoxipride — an 123I IBZM single photon emission tomography (SPET) study. Psychopharmacology 117:55–61

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine and haloperidol on formation of 3-mehtoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Article  CAS  Google Scholar 

  • Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopamine neurons. J Neurosci 3: 1607–1619

    PubMed  CAS  Google Scholar 

  • Chiodo LA, Bunney BS (1985) Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci 5:2539–2544

    PubMed  CAS  Google Scholar 

  • Chou YH, Halldin C, Farde L (2003) Occupancy of 5-HT1A receptors by clozapine in the primate brain: a PET study. Psychopharmacology (Berl) 166:234–240

    CAS  Google Scholar 

  • Chua SE, McKenna PJ (1995) Schizophrenia: a brain disease? A critical review of structural and functional cerebral abnormality in the disorder. Br J Psychiatry 166:563–582

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ (1980) Molecular pathology of schizophrenia: more than one disease process? BMJ 280: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Deniker P (1990) The neuroleptics: a historical survey. Acta Psychiatr Scand 82[Suppl 358]:83–87

    Article  Google Scholar 

  • Deutch AY, Moghaddan B, Innis RB, Krystal JH, Aghajanian GK, Bunney BS, Charney DS (1991) Mechanisms of action of atypical antipsychotic drugs. Implication for novel therapeutic strategies for schizophrenia. Schizophr Res 4:121–156

    CAS  Google Scholar 

  • Dresel S, Mager T, Rossmuller B, Meisenzahl E, Hahn K, Moller HJ, Tatsch K (1999) In vivo effects of olanzapine on striatal dopamine D(2)/D(3) receptor binding in schizophrenic patients: an iodine-123 iodobenzamide single-photon emission tomography study. Eur J Nucl Med 26:862–868

    Article  PubMed  CAS  Google Scholar 

  • Erlandsson K, Bressan RA, Mulligan RS, Gunn RN, Cunningham VJ, Owens J, Wyper D, Ell PJ, Pilowsky LS (2003) Kinetic modelling of [123I]CNS 1261 — a potential SPET tracer for the NMDA receptor. Nucl Med Biol 30:441–454

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231:258–261

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel A, Nordstrom AL, Sedvall G (1989) D1-and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology 99: S28–S31

    Article  PubMed  Google Scholar 

  • Farde L, Nordstrom AL, Wiesel A, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomography analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side-effects. Arch Gen Psychiatry 49:538–543

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordstrom AL, Nyberg, Halldin C, Sedvall G (1994) D1-, D2-and 5HT2-receptor occupancy in clozapine-treated patients. J Clin Psychiatry 55[Suppl B]:67–69

    PubMed  Google Scholar 

  • Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J, Halldin C (1997) A PET study of 11C FLB-457 binding to extrastriatal D2 dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology 133:396–404

    Article  CAS  Google Scholar 

  • Fulton B, Goa KL (1997) Olanzapine. A review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses. Ref Drugs 53:281–298

    Article  CAS  Google Scholar 

  • Gruzelier J, Seymour K, Wilson L, Jolley A, Hirsch S (1998) Impairments on neuropsychologic tests of temporohippocampal and frontohippocampal functions and word fluency in remitting schizophrenia and affective disorders. Arch Gen Psychiatry 45:623–629

    Article  Google Scholar 

  • Hietala J, Syvälahti E, Vilkman H, Vuorio K, Räkköläinen V, Bergman J, Haaparanta M, Solin O, Kuoppamäki M, Eronen E, Ruotsalainen U, Salokangas RKR (1998) Depressive symptoms and presynaptic dopaminergic function in neuroleptic-naïve schizophrenia. Schizophr Res 35:41–50

    Article  Google Scholar 

  • Jackson DM, Ryan C, Eveden J, Mohell N (1994) Preclinical findings with new antipsychotic agents: what makes them atypical? Acta Psychiatr Scand 89[Suppl 380]:41–48

    Article  Google Scholar 

  • Johnstone EC, Crow TJ, Frith CD, Carney MWP, Price JS (1978) Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet 22:848–851

    Article  Google Scholar 

  • Jones H, Travis MJ, Mulligan RS et al (2001) In vivo 5HT2a receptor blockade by quetiapine. An R91150 single photon emission tomography study. Psychopharmacology (Berl) 157:60–66

    Article  CAS  Google Scholar 

  • Joyce JN, Goldsmith SG, Gurevich EV (1997) Limbic circuits and monoamine receptors: dissecting the effects of antipsychotics from disease processes. J Psychiatr Res 31:197–217

    Article  CAS  Google Scholar 

  • Kane J, Honigfeld G, Singer J et al (1988) Clozapine for the treatment resistant schizophrenic. Arch Gen Psychiatry 45:789–796

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Remington G, Jones C, Wilson A, da Suva J, Houle S, Zipursky R (1996) High levels of dopamine D2 receptor occupancy with low dose haloperidol treatment: a PET study. Am J Psychiatry 153:948–950

    PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000a) Relationship between dopamine D2 occupancy, clinical response and side-effects: a double blind PET study of first episode schizophrenia. Am J Psychiatry 157:514–520

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P (2000b) A positron emission tomography study of quetiapine in schizophrenia. Arch Gen Psychiatry 57:553–559

    Article  PubMed  CAS  Google Scholar 

  • Kerwin RW (1994) The new atypical antipsychotics. Br J Psychiatry 164:141–148

    Article  PubMed  CAS  Google Scholar 

  • Kerwin R, Pilowsky L (1994) The management of patients with schizophrenia. In: Murray PC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment, vol 1. Churchill Livingstone, Edinburgh, pp 607–611

    Google Scholar 

  • Kessler RM, Meltzer HY (2002) Regional selectivity in clozapine treatment? Am J Psychiatry 159: 1064–1065

    Article  PubMed  Google Scholar 

  • Knable MB, Heinz A, Raedler T, Weinberger DR (1997) Extrapyramidal side effects with risperidone and haloperidol at comparable D2 receptor occupancy levels. Psychiatry Res 75:91–101

    Article  CAS  Google Scholar 

  • Kolakowska T, Williams AO, Ardern M, Reveley MA, Jambor K, Gelder MG, Mandelbrote BM (1985) Schizophrenia with good and poor outcome I: early clinical features, response to neuroleptics and signs of organic dysfunction. Br J Psychiatry 146:229–246

    Article  PubMed  CAS  Google Scholar 

  • Lane HY, Chang YC, Chiu CC et al (2002) Association of risperidone treatment response with a polymorphism in the 5-HT2A receptor gene. Am J Psychiatry 159:1593–1595

    Article  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, Van Dick H et al (1996) Single photon emission computerised tomography imaging induced dopamine release in drug free schizophrenic patients. Proc Natl Acad Sci U S A 93:9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Leucht S, Barnes TR, Kissling W, Engel RR, Correll C, Kane JM (2003) Relapse prevention in schizophrenia with new-generation antipsychotics: a systematic review and exploratory meta-analysis of randomized, controlled trials. Am J Psychiatry 160:1209–1222

    Article  PubMed  Google Scholar 

  • Levant B (1997) The D3 dopamine receptor: neurobiology and potential clinical relevance. Pharmacol Rev Am Soc Pharmacol Exp Ther 49:231–252

    CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS (1994) A common action of clozapine, haloperidol and remox-ipride on D1-and D2-dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad SciUS A 91:4353–4356

    Article  CAS  Google Scholar 

  • Lidow MS, Williams GV, Goldman-Rakic PS (1998) The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci 19:136–140

    Article  PubMed  CAS  Google Scholar 

  • Lidsky TI (1995) Reevaluation of the mesolimbic hypothesis of antipsychotic drug action. Schizophr Bull 21:67–74

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacol-ogy 21[Suppl 1]:106S–115S

    CAS  Google Scholar 

  • Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251: 238–246

    PubMed  CAS  Google Scholar 

  • Moore H, West AR, Grace AA (1999) The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biol Psychiatry 46:40–55

    Article  PubMed  CAS  Google Scholar 

  • Nolte J (1999) Drives, emotion and memories: the hypothalamus and the limbic system. In: Nolte J (ed) The human brain — an introduction to its functional anatomy, 4th edn. Mosby, New York, pp 537–563

    Google Scholar 

  • Nordstrom AL, Farde L, Wiesel A, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2 dopamine receptor occupancy in relation to antipsychotic drug effect: a double blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom AL, Farde L, Nyberg S, Karlsson P et al (1995) D1, D2, 5HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152:1444–1449

    PubMed  CAS  Google Scholar 

  • Nyberg S, Nakashima Y, Nordstrom AL et al (1996) Positron emission tomography of in-vivo binding characteristics of atypical antipsychotic drugs. Review of D2 and 5-HT2 receptor occupancy studies and clinical response. Br J Psychiatry [Suppl] 29:40–44

    Google Scholar 

  • Owens DC (1998) The drug treatment of schizophrenia. In: Stein G, Wilkinson G (eds) Seminars in general adult psychiatry, vol 1. Royal College of Psychiatrists, London, pp 381–453

    Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin, alpha-adrenergic and histaminergic receptors to clinical potency. Am J Psychiatry 137: 1518–1522

    PubMed  CAS  Google Scholar 

  • Pickar D (1995) Prospects for pharmacotherapy of schizophrenia. Lancet 345:557–562

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky LS, Costa DC, Ell PJ, Murray R, Verhoeff N, Kerwin RW (1992) Clozapine, single photon emission tomography and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340:199–202

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky LS, Costa DC, Ell PJ, Murray R, Verhoeff N, Kerwin RW (1993) Antipsychotic medication, D2 dopamine receptor blockade and clinical response — a 1231IBZM SPET (single photon emission tomography) study. Psychol Med 23:791–799

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky LS, Busatto GF, Taylor M, Costa DC, Sharma T, Sigmundsson T, Ell PJ, Nohria V, Kerwin RW (1996) Dopamine D2 receptor occupancy in vivo by the novel atypical antipsychotic olanzapine — a 123I IBZM single photon emission tomography (SPET) study. Psychopharmacology 124:148–153

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky LS, Mulligan R, Acton P, Costa D, Ell P, Kerwin RW (1997) Limbic selectivity of clozapine. Lancet 350:490–491

    Article  CAS  Google Scholar 

  • Rosenbloom M (2002) Chlorpromazine and the psychopharmacologic revolution. JAMA 287: 1860–1861

    Article  PubMed  Google Scholar 

  • Roth BL, Meltzer HY, Khan N (1998) Binding of typical and atypical antipsychotic drugs to multiple neurotransmitter receptors. Adv Pharmacol 42:482–485

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Tallerico T (1998) Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatry 3:123–134

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Tallerico T (1999) Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine and quetiapine. Am J Psychiatry 156:876–884

    PubMed  CAS  Google Scholar 

  • Seeman P, Lee T, Chou-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–718

    Article  PubMed  CAS  Google Scholar 

  • Sirota P, Epstein B, Benatov R et al (2001) An open study of buspirone augmentation of neuroleptics in patients with schizophrenia. J Clin Psychopharmacol 21:454–455

    Article  PubMed  CAS  Google Scholar 

  • Stephenson CM, Bigliani V, Jones HM, Kerwin RW, Pilowsky LS, Mulligan RS, Visvikis D, Ell PJ, Acton PD (2000) Striatal and extra-striatal D2/D3 dopamine receptor occupancy by quetiapine in vivo: 123I-epidepride single photon emission tomography (SPET) study. Br J Psychiatry 177:408–415

    Article  PubMed  CAS  Google Scholar 

  • Strange PG (2001) Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic action and side-effects. Pharmacol Rev 53:119–134

    PubMed  CAS  Google Scholar 

  • Stone JM, Bressan RA, Erlandsson K, Davies G, Ell PJ, Pilowsky LS (2003) Atypical antipsychotic drugs preferentially occupy caudate D2/D3 receptors D a voxel based analysis. Eur J Nucl Med Mol Imaging 30[Suppl 2]:S215

    Google Scholar 

  • Sumiyoshi T, Matsui M, Nohara S et al (2001) Enhancement of cognitive performance in schizophrenia by addition of tandospirone to neuroleptic treatment. Am J Psychiatry 158:1722–1725

    Article  PubMed  CAS  Google Scholar 

  • Tollefson G, Beasley CM Jr, Tran P (1997) Olanzapine versus haloperidol in the treatment of schizophrenia and schizoaffective and schizophreniform disorders: results of an international collaborative trial. Am J Psychiatry 154:456–465

    Google Scholar 

  • Tran PV, Dellva MA, Tollefson GD, Beasley CM, Potvin JH, Kiesler GM (1997) Extrapyramidal symptoms and tolerability of olanzapine versus haloperidol in the acute treatment of schizophrenia. J Clin Psychiatry 58:205–211

    Article  CAS  Google Scholar 

  • Travis MJ, Busatto GF, Pilowsky LS et al (1997) Serotonin: 5-HT2A receptor occupancy in vivo and response to the new antipsychotics olanzapine and sertindole. Br J Psychiatry 171:290–291

    Article  PubMed  CAS  Google Scholar 

  • Travis MJ, Busatto GF, Pilowsky LS et al (1998) 5HT2a receptor blockade in schizophrenic patients treated with risperidone or clozapine, a 123l-5-I-R-91150 single photon emission tomography (SPET) study. Br J Psychiatry 173:236–241

    Article  PubMed  CAS  Google Scholar 

  • Trichard C, Paillere-Martinot ML, Attar-Levy D et al (1998) Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am J Psychiatry 155:505–508

    PubMed  CAS  Google Scholar 

  • Wagner HN, Burns HD, Dannals RF, Wong DF et al (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue C-Y, Cooper TB, Brodie JD (1989) Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry 146:905–908

    PubMed  CAS  Google Scholar 

  • Xiberas X, Martinot JL, Mallet L, Artiges E, Loc’H C, Maziere B, Paillere-Martinot ML (2002) Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 181:254–255; discussion 255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bigliani, V., Pilowsky, L.S., Busatto, G. (2004). Neuroreceptor Imaging Studies and the Mechanism of Action of Antipsychotic Drugs. In: Otte, A., Audenaert, K., Peremans, K., van Heeringen, K., Dierckx, R.A. (eds) Nuclear Medicine in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18773-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18773-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62287-8

  • Online ISBN: 978-3-642-18773-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics