Skip to main content

UV-Radiation Biology as Part of Cancer Research

  • Conference paper
Book cover Life Sciences and Radiation

Abstract

The existence of UV-radiation is known since about 200 years, starting with the pioneering work of Johann Wilhelm Ritter [1]. Since then an enormous amount of knowledge has been collected about this kind of non-ionizing radiation and its impacts on nearly every part of animated and in-animated material, because the main source of environmental UV is the sun. A picture is emerging now, that solar UV-radiation, although necessary in having driven the evolution of many biological systems [2], has to be seen as one of, if not the most prominent environmental challenge presented to many organisms on earth. UV-radiation (280–400 nm) can be absorbed by many molecular components in the cell. Energies of different parts of the solar UV-spectrum (UVC: 100–280 nm, UVB: 280–315 nm, UVA: 315–400 nm) are therefore able to excite molecules to reactive electronic states which are photophysical precursors of a plenitude of photochemical reactions, depending on the UV-wavelength region. This may lead to changes in molecular structure or even create new molecular species with high and often hazardous reactivity against important molecular and genetic components in the cell. In this way cells might be damaged in an UV-dependent way. The main target of UV-induced damage in the cell is DNA. This is because DNA is able, both, to absorb UV-photons directly or to interact with UV-induced cellular species (e.g. reactive oxygen species, ROS). Both reaction pathways may introduce lesions into DNA, which if not, not fully or misrepaired may give rise to mutations with cancerogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ritter JW (1803) Versuche über das Sonnenlicht. Gilberts Ann Physik 12:409–415 (München)

    Article  Google Scholar 

  2. Cleaver JE, Mitchell DL (1997) Ultraviolet radiation carcinogenesis. In: Holland JF, B ast Jr. RC, Morton DL, Frei IIIE, Kufe DW, Weichselbaum RR (eds) Cancer Medicine Vol. 1, Willams and Wilkens, Baltimore:307–318.

    Google Scholar 

  3. Cleaver JE, Thompson LH, Richardson AS, States JC (1999) A summary of mutations in UV, sensitive disorders: Xeroderma pigmentosum, Cockayne syndrome, and Trichothiodystrophy. Human Mutat 14:19–22

    Article  Google Scholar 

  4. Slaper H, Velders GS, Daniel JS, deGruijl FR, van der Leund JC (1996) Estimation of ozone depletion and skin cancer incidence to examine the Vienna convention achievements. Nature 21:256–258.

    Article  Google Scholar 

  5. Rosenstein BS, Mitchell DL (1987) Action spectra for the induction of pyrimidine(6-4) pyrimidone photoproducts and cyclobutane dimers in normal human skin fibroblasts. Photochem Photobiol 45:775–781

    Article  PubMed  CAS  Google Scholar 

  6. Cadet J, Vigny P (1990) The photochemistry of nucleic acids. In: Morrison H (ed) Bioorganic Photochemistry: Photochemistry and the nucleic acids Vol. 1 J. Wiley and Sons, New York, NY: 1–272

    Google Scholar 

  7. Mitchell DL, Brash DE, Nairn RS (1990) rapid repair of pyrimidine (6-4) pyrimodone photoproducts in human cells does not result from change in epitope conformation. Nucl Acids Res 18:963–971

    Article  PubMed  CAS  Google Scholar 

  8. Mitchell DL, Karentz D (1993) The iduction and repair of DNA photodamage in the environment. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV Photobiology Plenum Press, New York and London:345–377

    Google Scholar 

  9. Greinert R, Boguhn O, Harder D, Breitbart EW, Mitchell DL, Volkmer B (2000b) The dose dependence of cyclobutane dimer induction and repair in UVB-irradiated human keratinocytes. Photochem Photobiol 72:701–708

    Article  PubMed  CAS  Google Scholar 

  10. Mitchell DL, Pederson M, Gosh R (1996) UV-induced DNA damage and skin cancer. In: Volkmer B, Heller H (eds) Environmental UV-radiation, risk of skin cancer and primary prevention Fischer Verlag, Stuttgart, Jena, Lübeck, Ulm: 117–136

    Google Scholar 

  11. Tressmann I, Liu SK, Kennedy MA (1992) Mechanism of SOS muatgenesis of UV-irradiated DNA: mostly error-free processing of deaminated cytosin. Proc Natl Acad Sci USA 89:1159–1163

    Article  Google Scholar 

  12. Matsumura Y, Ananthaswamy HN (2000) Molecular mechanisms of photocarcinogenesis Front. Bioscience 7 765–783

    Google Scholar 

  13. Harris CC (1996) Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 88:1442–1455

    Article  PubMed  CAS  Google Scholar 

  14. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    Article  PubMed  CAS  Google Scholar 

  15. Hollstein, M. Sidransky, D, Vogelstein, B, Harris, CC (1991) p53 mutation in human cancer. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  16. Ziegler A, Leffell DJ, Kunala S, Sharma HW, Gailani M, Simon JA, Halperin AJ, Baden HP, Shapiro PE, Bale AE, Brash DE (1994) Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancer. Proc Natl Acad Sci USA 90:4216–4220

    Article  Google Scholar 

  17. Brash DE, Rudolph JA, Simon JA, Liu A, McKenna GJ, Baden HP, Halperin AJ, Ponten J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88:10124–10128

    Article  PubMed  CAS  Google Scholar 

  18. van der Riet P, Karp D, Farmer E, Wei Q, Grossmann L, Tokino K, Ruppert JM, Sidransky D (1994) Progression of basal cell carcinoma through loss of chromosome 9q and inactivation of a single p53 allele. Cancer Res 54:25–27

    PubMed  Google Scholar 

  19. Nelson MA, Einspahr JG, Alberts DS, Balfour CA, Wymer JA, Welch KL, Salasche SJ, Bangert JL, Grogan TM, Bozzo PO (1994) Analysis of p53 gene in human precancerous actinic keratosis lesions and squamous cell carcinoma. Cancer Lett 85:23–29

    Article  PubMed  CAS  Google Scholar 

  20. Brash DE (1997) Sunlight and the onset of skin cancer. Trends Genet 13:420–413

    Article  Google Scholar 

  21. Fusenig N, Boukamp P (1998) Multiple steps of genetic alterations in immortalization, malignant transformation and tumor progression in human skin keratinocytes. Mol Carcinogen 23:144–158

    Article  CAS  Google Scholar 

  22. Cadet J, Aselmino C, Douki, T Voituriez L (1992) Photochemistry of nucleic acids in cells. J Photochem Photobiol B 15:277–298

    Article  PubMed  CAS  Google Scholar 

  23. Cadet J, Berger M, Douki T, Ravanat J-L (1997) Oxidative damage to DNA: formation, measurement and biological significance. Rev Physiol Biochem Pharmacol 137:1–87

    Google Scholar 

  24. Kielbassa C, Roza L, EPE, B (1997) Wavelength dependence of oxidative DNA damage induce by UV and visible light. Carcinogenesis 18:811–816

    Article  PubMed  CAS  Google Scholar 

  25. Fischer-Nielson A, Loft S, Jensen KG (1993) Effect of ascorbate and 5-aminosalicylic acid on light-induced 8-oxo-guanosone formation in V79 hamster cells. Carcinogenesis 14:2431–2433

    Article  Google Scholar 

  26. Douki T, Perdiz D, Grof P, Moustacchi E, Cadet J, Sage E (1999) Oxidation of guanin in cellular DNA by solar UV-radiation: Biological role. Photochem Photobiol 70:184–190

    Article  PubMed  CAS  Google Scholar 

  27. Zhang XS, Rosenstein BS, Lebwohl M, Mitchel DL, Wei HC (1997) Induction of 8-oxo-7,8 dihydro-2’-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells. Photochem Photobiol 65:119–124

    Article  PubMed  CAS  Google Scholar 

  28. Kvam E, Tyrell RM (1997) Induction of oxidative DNA damage in human skin cells by UV and visible radiation. Carcinogenesis 18:2379–2384

    Article  PubMed  CAS  Google Scholar 

  29. Wamer WG, Wei RR (1997) In-vitro photo-oxidation of nucleic acids by ultraviolet A radiation. Photochem Photobiol 65:560–563

    Article  PubMed  CAS  Google Scholar 

  30. Pflaum M, Kielbassa C, Garmyn M, Epe B (1998) Oxidative DNA damage induced by visible light in mammalian cell: extent, inhibition by antioxidants and genotoxic effects. Mutat Res 408:137–146

    Article  PubMed  CAS  Google Scholar 

  31. LePage F, Margat A, Grollmann AP, Sarasin A, Gentil A (1995) Mutagenicity of a unique 8-oxoguanine in human a Ha-ras sequence in mammalian cells. Carcinogenesis 16:2779–2784

    Article  CAS  Google Scholar 

  32. Grollmann AP, Moriya M (1993) Mutagenesis by 8-oxo-guanine: an enemy within. Trends Genet 9:246–249

    Article  Google Scholar 

  33. Moriya M (1993) Single-stranded shuttle plasmid for mutagenesis studies in mammalian cells: 8-oxo-guanine in DNA induces targeted GC-»TA transversions in simian kidney cells. Proc Natl Acad Sci, USA 90:1122–1126

    Article  PubMed  CAS  Google Scholar 

  34. Kamiya H, Murata-Kamiya S, Koizume S, Nishimura S, Ohtsuka E (1995) 8-hydroxyguanine (7,8-dihydroxy-8-oxoguanine) in hot-spots of the c-Ha-ras gene: effects of sequence contexts in mutation spectra. Carcinogenesis 16:883–889

    Article  PubMed  CAS  Google Scholar 

  35. Dobretsky EA, Turcotte J, Chateauneuf A (1995) A role of ultraviolet A in solar mutagenesis. Proc Natl Acad Sci USA 92:2350–235

    Article  Google Scholar 

  36. Roberts C, Muel B, Benoit A, Dubetret A, Sarasin A, Stary A (1996) Cell survival and shuttle vector mutagenesis induce by ultraviolet A and ultraviolet B radiation in a human cell line. J Invest Dermatol 106:721–728

    Article  Google Scholar 

  37. Duma N, van Kranen HJ, de Vries A, Berg RJW, Wester CF, van Kreijl CF, Sarasin A, Daya-Grosjean L, deGruijl FR (1997) The role of UVB light in skin carcinogenesis through the analysis of p53 mutations in squamous cell carcinoma of hairless mice. Carcinogenesis 18:897–904

    Article  Google Scholar 

  38. deGruijl FR, Sterenborg HJ, Forbes PD, Davies RE, Cole C, Kelfkens G, van Weelden H, Slapers H, van der Leun JC (1993) Wavelength dependence of skin cancer induction by ultaviolet irradiation of albino hairless mice. Cancer Res 53:53–60

    CAS  Google Scholar 

  39. Ley RD (2002) Animal models of ultraviolet radiation (UVR)-induced cutaneous melanoma. Front Biosci 7:1531–153

    Article  Google Scholar 

  40. Tyrell RM (1973) Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation. Photochem Photobiol 17:69–73

    Article  Google Scholar 

  41. Kuluncics, Z, Perditz, D, Brulay, E, Muel, B and Sage, E (1999) Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct and indirect mechanisms and possible artefacts. J Photochem Photobiol B: Biol. 49:71–80

    Article  Google Scholar 

  42. Perdiz D, Grof P, Mezzina M, Nikaido O, Moustacchi E, Sage E (2000) Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. J Biol Chem 35:26732–26742

    Google Scholar 

  43. Sutherland JC, Griffin KP (1981) Absorption spectrum of DNA for wavelength greater than 360 nm. Radiat Res 86:399–409

    Article  PubMed  CAS  Google Scholar 

  44. Setlow RB (1974) The wavelength in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci USA 71:3363–3366

    Article  PubMed  CAS  Google Scholar 

  45. Cabelof DC, Raffoil JJ, Yanamadala S, Guo Z, Heydari AR (2002) Induction of polymerase beta-dependent by excision repair in response to oxidative stress in vivo. Carcinogenesis 23:1419–1425

    Article  PubMed  CAS  Google Scholar 

  46. Mitra S, Izumi,T, Boldogh I, Bhakkat KK, Hill JW, Hazra TH (2002) Choreography of oxidative damage repair in mammalian genomes. Free Radic Biol Med 33:15–28

    Article  PubMed  CAS  Google Scholar 

  47. Taylor RM, Moore DJ, Whitehouse J, Johnson P, Caldecott KW (2000) A cell cycle-specific requirement for XRCC1 BRCT II domain during mammalian strand break repair. Mol Cell Biol 20:735–740

    Article  PubMed  CAS  Google Scholar 

  48. Paulovich AG, Toczyski DP, Hartwell LH (1997) When checkpoints fail. Cell 88:315–321

    Article  PubMed  CAS  Google Scholar 

  49. Okano S, Kanno S, Nakajima S, Yasui A (2000) Cellular response and repair of singlestrand breaks introduced by UV damage endonuclease in mammalian cells. J Biol Chem 42:32635–32641

    Article  Google Scholar 

  50. IARC: Solar and Ultraviolet Radiation (1992) IARC Monographs on the Evaluation of carcinogenic risks to humans. IARC Scientific Publication 55:73–138

    Google Scholar 

  51. Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B: Biology 63:8–18

    Article  PubMed  CAS  Google Scholar 

  52. Berwick M, Halpern A (1997) Melanoma epidemiology. Curr Opin Oncol 9:178–182

    Article  PubMed  CAS  Google Scholar 

  53. Breitbart M, Garbe C, Büttner P et al. (1997) Ultraviolet light exposure, pigmentary traits and the development of melanocytic naevi and cutaneous melanoma. A case-control study of the German Central Malignant Melanoma Registry. Acta Derm Venerol 77:374–378, 11

    PubMed  CAS  Google Scholar 

  54. Dulon M, Weichenthal M, Blettner M, Breitbart M, Hetzer M, Greinert R, Baumgardt-Elms C, Breitbart EW (2002) Sun exposure and number of nevi in 5-to 6-year old European children, J Clin Epidemiol 55:1075–1081

    Article  PubMed  Google Scholar 

  55. Kraemer KH, Lee MM, Andrews AD, Lambert WC (1994) The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. ArchDermatol 130:1018–1021

    CAS  Google Scholar 

  56. van Hoffen A., Venema J, Meschini R, van Zeeland AA, Mullenders LHF (1995) Transcription coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J 14:360–367.

    PubMed  Google Scholar 

  57. Bohr VA, Smith CA, Okumotu DS, Hanawalt PC (1985) DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40:359–369

    Article  PubMed  CAS  Google Scholar 

  58. Mellon I, Spivak G, Hanawalt PC (1987) Selective removal of transcription blocking DNA damage from the transcribed strand of mammalian DHFR gene. Cell: 51:241–249.

    Article  PubMed  CAS  Google Scholar 

  59. Selby CP, Sancar A (1993) Molecular mechanism of transcription-repair coupling. Science 260:53–58.

    Article  PubMed  CAS  Google Scholar 

  60. Kunala S, Brash DE (1992) Excision repair at individual bases of the Escherichia coli lacI gene: Relation to mutation hot spots and transcription coupling activity. Proc Natl Acad Sci: USA 89:1031–11035.

    Article  Google Scholar 

  61. Gao S, Drouin R, Holmquist GP (1994) DNA repair rates mapped along a human gene at nucleotide resolution. Science 263:1438–1440.

    Article  PubMed  CAS  Google Scholar 

  62. Tornaletti S, Pfeiffer GP (1994) Slow repair of pyrimidine dimers at p53 mutation hot spots in skin cancer. Science 263:1436–1438.

    Article  PubMed  CAS  Google Scholar 

  63. Tu Y, Tornaletti S, Pfeiffer GP (1996) DNA repair domains within a human gene: Selective repair sequences near the transcription initiation site. EMBO J 15:5–683.

    Google Scholar 

  64. Tijsterman M, Tasseron-de Jong JG, van de Putte P, Bouxer J (1996) Transcription-coupled and global genome repair in Saccharomyces cerevesiae RPB2 gene at nucleotide resolution. Nucleic Acids Res 24:3499–3505.

    Article  PubMed  CAS  Google Scholar 

  65. Dammann R, Pfeiffer GP (1997) Lack of gene-and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes. Mol Cell Biol 17:219–229.

    PubMed  CAS  Google Scholar 

  66. Pfeiffer GP (1997) Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochem Photobiol 65:805–819

    Article  Google Scholar 

  67. Smerdon MJ, Thomae F (1990) Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 61:675–684.

    Article  PubMed  CAS  Google Scholar 

  68. Schieferstein U, Thoma F (1998) Site-specific repair of cyclobutane pyrimidine dimer formation in a positioned nucleosome by photolyase and T4 endonuclease V in vitro. EMBOJ 17:306–316.

    Article  CAS  Google Scholar 

  69. Wang Z, Wu X, Friedberg EC (1991) Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes. J Biol Chem 266:22472–22478

    PubMed  CAS  Google Scholar 

  70. Suquet C, Mitchell DL, Smerdon MJ (1995) Repair of UV-induced (6-4) photoproducts in nucleosome core DNA. J Biol Chem 270: 16507–16509

    Article  PubMed  CAS  Google Scholar 

  71. Schieferstein U, Thoma F (1996) Modulation of cyclobutane pyrimidine dimer formation in apositioned nucleosome containing poly(dA·dT) tracts. Biochem 35:7705–7714.

    Article  CAS  Google Scholar 

  72. Greinert R, Breitbart EW, Mitchell DL, Smida J, Volkmer B (2000a) Characterization of human keratinocytes by measuring cellular repair capacity of UVB-induced DNA damage and monitoring of cytogenetic changes in melanoma cell lines. Radiat Protect Dosim: 91, 41–45

    Article  CAS  Google Scholar 

  73. Mitchell DL, Greinert R, De Gruijl FR, Guikers KLH., Breitbart EW, Byrom M., Gallmeier M, Lowery M, Volkmer B (1999) Effects of chronic low-dose ultraviolet B radiation on DNA damage and repair in mouse skin. Cancer Res 59:2875–2884

    PubMed  CAS  Google Scholar 

  74. ]Mitchell DL, Volkmer B, Breitbart EW, Byrom M., Lowery MG, Greinert R (2001) Identification of a non-dividing subpopulation of mouse and human epidermal cells exhibiting high levels of persistent UV photodamage. J Invest Dermatol:117, 590–595

    Article  PubMed  CAS  Google Scholar 

  75. Slaga TJ, Budunova IV, Gimenez-Conti IB, Aldaz M (1996) The mouse skin carcinogenesis model. J Invest Dermatol Symposium Proceedings 1:151–156

    CAS  Google Scholar 

  76. Morris RJ (2000) Keratinocyte stem cells: targets for cutaneous carcinogens. The Journal of Clinical Investigation 106:3–8

    Article  PubMed  CAS  Google Scholar 

  77. Jones PH, Harper S, Watt FM (1995) Stem cell patterning and fate in human epidermis. Cell 80:83–93

    Article  PubMed  CAS  Google Scholar 

  78. Volkmer B, Mitchell DL, Breitbart EW, Greinert R (2003): Immunofluorescent detection of persistent heavily damaged cell in the basal layer of sun exposed human skin. J Invest Dermatol, submitted

    Google Scholar 

  79. Johnson TM, Dolan OM, Hamilton TA, Lu MC, Swanson NA, Lowe L (1998) Clinical and histological trends in melanoma. J Am Acad Dermatol 38:731–744

    Article  PubMed  CAS  Google Scholar 

  80. Becker N, Warendorf J (1998) Krebsatlas der Bundesrepublik Deutschland, 1981-1990. 3. Auflage, Springer Verlag.

    Google Scholar 

  81. Moan J, Dahlback A, Setlow RB (1999) Epidemiological support for a hypothesis for melanoma induction indicating a role for UVA radiation. Photochem. Photobiol 70:243–247

    Article  CAS  Google Scholar 

  82. Rünger T (1999) Role of UVA in pathways of melanoma and nonmelanoma skin cancer. Photodermatol Photoimmunol Photomed 15:212–216

    Article  Google Scholar 

  83. Robinson ES, Hill RJ, Kripke ML, Setlow RB (2000) The monodelphis melanoma model: initial report on large ultraviolet A exposure of suckling young. Photochem Photobiol 71:743–746

    Article  PubMed  CAS  Google Scholar 

  84. Wang SQ, Setlow R, Berwick M, Polsky D, Marykoob AA, Kopf AW, Bart RS (2000) Ultraviolet A and melanoma: a review. J Am Acad Dermatol 146:837–846

    Google Scholar 

  85. Ortonne JP (2002) Photobiology and genetics of malignant melanoma. Br J Dermatol 146:11–16

    Article  PubMed  CAS  Google Scholar 

  86. Walker GJ, Hayward NK (2002) Pathways to melanoma development: lessons from the mouse. J Invest Dermatol 119:783–792.

    Article  PubMed  CAS  Google Scholar 

  87. Castello M, Pollock PM, Walters MK et al. (1997) CDKN2A/p16 is inactivated in most melanoma cell lines. Cancer Res 57:4868–4874

    Google Scholar 

  88. Walker, GJ, Flores, JF, Glendening, JM, Lin, AH, Markl, ID, Fountain, JW (1998): Virtual 100% of melanoma cell lines harbour alterations at the DNA level within CDKN2A, CDKN2B or one of their downstream targets. Genes Chrom Cancer 22: 157–163

    Article  PubMed  CAS  Google Scholar 

  89. Dracopoli NC, Fountain JW (1996) CDKN2A mutations and melanoma. Cancer Surveys 26:115–132

    PubMed  CAS  Google Scholar 

  90. Swedley D, Sidhar S, Birdsall S, Bennett D, Herlyn M, Cooper C, Shipley J (2000) Characterization of chromosome 1 abnormalities in malignant melanomas. Genes Chrom Cancer 28:121–125

    Article  Google Scholar 

  91. Sargent LM, Nelson MA, Lowry DT, Senft JR, Jefferson AM, Ariza ME, Reynolds SH (2001) Detection of three novel translocations and specific common chromosomal break sites in malignant melanoma by spectral karyotyping. Genes Chrom Cancer 32:18–25

    Article  PubMed  CAS  Google Scholar 

  92. Bender MA, Griggs HG, Walker PL (1973) Mechanisms of chromosomal aberration production. I. Aberration induction by ultraviolet light. Mutat Res 20:387–402

    Article  PubMed  CAS  Google Scholar 

  93. Kaufmann WK, Wilson SJ (1994) G1 arrest and cell-cycle dependent clastogenesis in UV irradiated human fibroblasts. Mutat Res 314:67–76

    Article  PubMed  CAS  Google Scholar 

  94. Kaufmann WK (1989) Pathways of human cell post-replication repair. Carcinogenesis 10:1–11

    Article  PubMed  CAS  Google Scholar 

  95. Park SD, Cleaver JE (1979) Recovery of DNA synthesis after ultraviolet irradiation of xeroderma pigmentosum cells depends on excision repair and is blocked by caffein. Nucleic Acids Res 6:1151–1159

    Article  PubMed  CAS  Google Scholar 

  96. Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW (1998) A human homolog of sacharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of polymerase eta. Proc Natl Acad Sci USA 95:6876–6880

    Article  PubMed  CAS  Google Scholar 

  97. Masutani C, Kusamoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399:700–704

    Article  PubMed  CAS  Google Scholar 

  98. Wang TC, Smith KC (1986) Postreplication repair in ultraviolet-irradiated human fibroblasts: formation and repair of DNA double-strand breaks. Carcinogenesis 7:389–392

    Article  PubMed  CAS  Google Scholar 

  99. Michel B, Ehrlich SD, Uzest M (1997): DNA double-strand breaks caused by replication arrest. EMBO J 16:430–438

    Article  PubMed  CAS  Google Scholar 

  100. Haber JE (2000) Recombination: a frank view of exchanges and vice versa. Curr Opin Cell Biol 12:286–292

    Article  PubMed  CAS  Google Scholar 

  101. Lowndes NF, Mugia JR (2000) Sensing and responding to DNA damage. Curr. Opin Genet Dev 10:17–25

    Article  PubMed  CAS  Google Scholar 

  102. Wold MS (1997) Replication protein A: a heterodimeric, single-stranded DNA-binding protein required for eukaryontic DNA metabolism. Annu Rev Biochem 66: 61–92

    Article  PubMed  CAS  Google Scholar 

  103. Iftode, C, Daniely, Y and Borowiec, JA (1999): Replication protein A (RPA): the eukaryotic SSB. Crit. Rev. Biochem Mol Biol 34:141–180

    Article  PubMed  CAS  Google Scholar 

  104. Oakley GG, Loberg LI, Yao J, Risinger MA, Yunker RL, Zernik-Kobak M, Kanna KK, Lavin MF, Carty MP, Dixon K (2001) UV-induced hyperphosphorylation of replication protein A on DNA replication and expression of ATM protein. Mol Biol Cell 12:1199–1213

    PubMed  CAS  Google Scholar 

  105. Abraham RT (2001) Cell cycle checkpoint signalling through ATM and ATR kinases. Genes Develop 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  106. Limoli CL, Giedzinski E, Morgan WF, Cleaver JE (2000) Inaugural article: polymerase eta deficiency in xeroderma pigmentosum variant uncovers an overlap between S-phase checkpoint and double-strand break repair. Proc Natl Acad Sci USA 97:7939–7946

    Article  PubMed  CAS  Google Scholar 

  107. Limoli CL, Giedzinski Bonner WM, Cleaver JE (2002) UV-induced replication arrest in Xeroderma Pigmentosum variant leads to DNA double-strand breaks, ?-H2AX formation, and Mre1 1 recombination. Proc Natl Acad Sci USA, 8:233–238

    Article  CAS  Google Scholar 

  108. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467

    Article  PubMed  CAS  Google Scholar 

  109. Paull TT, Rogakou EP, Yamozaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  110. Rapp A, Dittmar H, Hausmann M, Greulich KO (2002) UVA irradiation produces DNA double strand breaks. Abstract. In: Proceedings of 6. Jahrestagung der Gesellschaft für Strahlenforschung, Sept. 25.–27., Göttingen, Germany

    Google Scholar 

  111. Rakyan VK, Preis J, Morgan HD, Whielaw E ( 2001) The mark, mechanisms and memory of epigenetic states in mammals. Biochem J 356:1–10

    Article  PubMed  CAS  Google Scholar 

  112. Roix J, Misteli T (2002) Genomes, proteomes, and dynamic networks in the cell nucleus. Histochem. Cell Biol 118:105–116

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greinert, R., Breitbart, E.W., Volkmer, B. (2004). UV-Radiation Biology as Part of Cancer Research. In: Kiefer, J. (eds) Life Sciences and Radiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18687-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18687-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62246-5

  • Online ISBN: 978-3-642-18687-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics