Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2011 ((AUICEM,volume 1))

Abstract

In recent years, infections caused by multi-drug resistant (MDR) pathogens have become a serious problem, especially in the nosocomial setting. The World Health Organization (WHO) has identified antimicrobial resistance as one of the three most important problems for human health. Some authors have summarized this phenomenon with the word ‘ESKAPE’, to include the most frequent MDR microorganisms: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. [1]. Resistance to the current library of antibacterial drugs is a serious problem in all parts of the world including the Asia-Pacific region, Latin America, Europe, and North America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis 197: 1079–1081

    Article  PubMed  Google Scholar 

  2. Infectious Diseases Society of America (2004) Bad Bugs, No Drugs. As Antibiotic Discovery Stagnates... A Public Health Crisis Brews. IDSA, Alexandria

    Google Scholar 

  3. Spellberg B, Guidos R, Gilbert D, et al (2008) The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46: 155–164

    Article  PubMed  Google Scholar 

  4. The 10 ×’ 20 initiative: Pursuing a global commitment to develop 10 new antibacterial drugs by 2020 (2010). Clin Infect Dis 50: 1081–1083

    Google Scholar 

  5. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39: 1211–1233

    PubMed  CAS  Google Scholar 

  6. Ambler RP (1980) The structure of beta-lactamases. Philosophical transactions of the Royal Society of London 289: 321–331

    Article  PubMed  CAS  Google Scholar 

  7. Kumarasamy KK, Toleman MA, Walsh TR, et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect Dis 10: 597–602

    Article  PubMed  CAS  Google Scholar 

  8. Moore RA, Chan L, Hancock RE (1984) Evidence for two distinct mechanisms of resistance to polymyxin b in pseudomonas aeruginosa. Antimicrob Agents Chemother 26: 539–545

    PubMed  CAS  Google Scholar 

  9. Poulakou G, Kontopidou FV, Paramythiotou E, et al (2009) Tigecycline in the treatment of infections from multi-drug resistant gram-negative pathogens. J Infect 58: 273–284

    Article  PubMed  Google Scholar 

  10. Keeney D, Ruzin A, Bradford PA (2007) Ram A, a transcriptional regulator, and acrab, an rnd-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist 13: 1–6

    Article  PubMed  CAS  Google Scholar 

  11. Gilbert D (2008) “The truth, if it exists, is in the details”. Crit Care Med 36: 1368–1369

    Article  PubMed  Google Scholar 

  12. Deshpande LM, Jones RN, Fritsche TR, Sader HS (2006) Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: Report from the sentry antimicrobial surveillance program (2000–2004). Microb Drug Resist 12: 223–230

    Article  PubMed  CAS  Google Scholar 

  13. Schwaber MJ, Carmeli Y (2007) Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: A systematic review and meta-analysis. J Antimicrob Chemother 60: 913–920

    Article  PubMed  CAS  Google Scholar 

  14. Lin YC, Chen TL, Ju HL, Chen HS, Wang FD, Yu KW, Liu CY (2006) Clinical characteristics and risk factors for attributable mortality in Enterobacter cloacae bacteremia. J Microbiol Immunol Infect 39: 67–72

    PubMed  CAS  Google Scholar 

  15. Peleg AY, Franklin C, Bell JM, Spelman DW (2005) Dissemination of the metallo-beta-lactamase gene blaimp-4 among gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis 41: 1549–1556

    Article  PubMed  CAS  Google Scholar 

  16. Bratu S, Landman D, Haag R, et al (2005) Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York city: A new threat to our antibiotic armamentarium. Arch Int Med 165: 1430–1435

    Article  CAS  Google Scholar 

  17. Pintado V, San Miguel LG, Grill F, et al (2008) Intravenous colistin sulphomethate sodium for therapy of infections due to multidrug-resistant gram-negative bacteria. J Infect 56: 185–190

    Article  PubMed  Google Scholar 

  18. EARSS (2008) European Antimicrobial Resistance Surveillance System; Annual Report. Available at: http://www.ecdc.europa.eu/en/activities/surveillance/EARS-Net/Documents/2008_EARSS_Annual_Report.pdf Accessed Nov 2010

    Google Scholar 

  19. Munoz-Price LS, Weinstein RA (2008) Acinetobacter infection. N Engl J Med 358: 1271–1281

    Article  PubMed  CAS  Google Scholar 

  20. Yang Y, Janota K, Tabei K, et al (2000) Mechanism of inhibition of the class a beta-lactamases pc1 and tem-1 by tazobactam. Observation of reaction products by electrospray ionization mass spectrometry. J Biol Chem 275: 26674–26682

    PubMed  CAS  Google Scholar 

  21. Bassetti M, Righi E, Viscoli C (2008) Novel beta-lactam antibiotics and inhibitor combinations. Expert Opin Investig Drugs 17: 285–296

    Article  PubMed  CAS  Google Scholar 

  22. Weiss WJ, Petersen PJ, Murphy TM, et al (2004) In vitro and in vivo activities of novel 6-methylidene penems as beta-lactamase inhibitors. Antimicrob Agents Chemother 48: 4589–4596

    Article  PubMed  CAS  Google Scholar 

  23. Venkatesan AM, Agarwal A, Abe T, et al (2004) Novel imidazole substituted 6-methylidene-penems as broad-spectrum beta-lactamase inhibitors. Bioorg Med Chem 12: 5807–5817

    Article  PubMed  CAS  Google Scholar 

  24. Shahid M, Sobia F, Singh A, et al (2009) Beta-lactams and beta-lactamase-inhibitors in current-or potential-clinical practice: A comprehensive update. Crit Rev Microbiol 35: 81–108

    Article  PubMed  CAS  Google Scholar 

  25. Richter HG, Angehrn P, Hubschwerlen C, et al (1996) Design, synthesis, and evaluation of 2 beta-alkenyl penam sulfone acids as inhibitors of beta-lactamases. J Med Chem 39: 3712–3722

    Article  PubMed  CAS  Google Scholar 

  26. Tzouvelekis LS, Gazouli M, Prinarakis EE, Tzelepi E, Legakis NJ (1997) Comparative evaluation of the inhibitory activities of the novel penicillanic acid sulfone ro 48–1220 against beta-lactamases that belong to groups 1, 2b, and 2be. Antimicrob Agents Chemother 41:475–477

    PubMed  CAS  Google Scholar 

  27. Kaur K, Adediran SA, Lan MJ, Pratt RF (2003) Inhibition of beta-lactamases by monocyclic acyl phosph(on)ates. Biochemistry 42: 1529–1536

    Article  PubMed  CAS  Google Scholar 

  28. Buynak JD, Ghadachanda VR, Vogeti L, Zhang H, Chen H (2005) Synthesis and evaluation of 3-(carboxymethylidene)-and 3-(carboxymethyl)penicillinates as inhibitors of beta-lactamase. J Org Chem 70: 4510–4513

    Article  PubMed  CAS  Google Scholar 

  29. Page M, Desarbre E, Geier C, Hofer B. Activity of BAL30376 against gram-negative bacteria. 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society of Microbiology, Abstract F1-229

    Google Scholar 

  30. Cherry PC, Newall CE, Watson NS (1978) Preparation of the 7-oxo-4-oxa-1-azabicyclo(3.2.0)hept-2-ene system and the reversible cleavage of its oxazoline ring. J Chem Soc Chem Commun 11: 469–470

    Article  Google Scholar 

  31. Jamieson CE, Lambert PA, Simpson IN (2003) In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against gram-positive and gram-negative organisms. Antimicrob Agents Chemother 47: 2615–2618

    Article  PubMed  CAS  Google Scholar 

  32. Lee JH, Bae IK, Hee Lee S (2011) New definitions of extended-spectrum beta-lactamase conferring worldwide emerging antibiotic resistance. Med Res Rev (in press)

    Google Scholar 

  33. Queenan AM, Shang W, Kania M, Page MG, Bush K (2007) Interactions of ceftobiprole with beta-lactamases from molecular classes A to D. Antimicrob Agents Chemother 51: 3089–3095

    Article  PubMed  CAS  Google Scholar 

  34. Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS (2008) A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis 46: 647–655

    Article  PubMed  Google Scholar 

  35. Sader HS, Fritsche TR, Kaniga K, Ge Y, Jones RN (2005) Antimicrobial activity and spectrum of ppi-0903m (t-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains. Antimicrob Agents Chemother 49: 3501–3512

    Article  PubMed  CAS  Google Scholar 

  36. Mushtaq S, Warner M, Ge Y, Kaniga K, Livermore DM (2007) In vitro activity of ceftaroline (ppi-0903m, t-91825) against bacteria with defined resistance mechanisms and phenotypes. J Antimicrob Chemother 60: 300–311

    Article  PubMed  CAS  Google Scholar 

  37. Vidaillac C, Leonard SN, Sader HS, Jones RN, Rybak MJ (2009) In vitro activity of ceftaroline alone and in combination against clinical isolates of resistant gram-negative pathogens, including beta-lactamase-producing enterobacteriaceae and pseudomonas aeruginosa. Antimicrob Agents Chemother 53: 2360–2366

    Article  PubMed  CAS  Google Scholar 

  38. Corey GR, Wilcox M, Talbot GH, et al (2010) Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin Infect Dis 51: 641–650

    Article  PubMed  CAS  Google Scholar 

  39. Bassetti M, Nicolini L, Esposito S, Righi E, Viscoli C (2009) Current status of newer carbapenems. Curr Med Chem 16: 564–575

    Article  PubMed  CAS  Google Scholar 

  40. Keating GM, Perry CM (2005) Ertapenem: A review of its use in the treatment of bacterial infections. Drugs 65: 2151–2178

    Article  PubMed  CAS  Google Scholar 

  41. Bassetti M, Righi E, Fasce R et al (2007) Efficacy of ertapenem in the treatment of early ventilator-associated pneumonia caused by extended-spectrum beta-lactamase-producing organisms in an intensive care unit. J Antimicrob Chemother 60: 433–435

    Article  PubMed  CAS  Google Scholar 

  42. Anderson DL (2006) Doripenem. Drugs Today (Barc) 42: 399–404

    Article  CAS  Google Scholar 

  43. Jones RN, Huynh HK, Biedenbach DJ (2004) Activities of doripenem (s-4661) against drug-resistant clinical pathogens. Antimicrob Agents Chemother 48: 3136–3140

    Article  PubMed  CAS  Google Scholar 

  44. Chen HY, Livermore DM (1994) Comparative in-vitro activity of biapenem against enterobacteria with beta-lactamase-mediated antibiotic resistance. J Antimicrob Chemother 33: 453–464

    Article  PubMed  CAS  Google Scholar 

  45. Perry CM, Ibbotson T (2002) Biapenem. Drugs 62: 2221–2234

    Article  PubMed  CAS  Google Scholar 

  46. Kumazawa J, Matsumoto T, Kumamoto Y (1992) Phase III comparative clinical trial of panipenem/betamipron (pam/bp) with imipenem/cilastatin sodium (ipm/cs) in complicated urinary tract infections. Nishinihon J Urol 54: 254–271

    Google Scholar 

  47. Hara K, Hiraga Y, Omichi M (1992) [A comparative study of panipenem/betamipron and imipenem/cilastatin in bacterial pneumonia]. Chemotherapy 40: 509–531

    Google Scholar 

  48. Hara K, Kouno SKH, Takebe K (1992) [A comparative study of panipenem/betamipron and imipenem/cilastatin in respiratory tract infections]. Chemotherapy 40: 613–673

    Google Scholar 

  49. Watanabe A, Tokue Y, Takahashi H, et al (2001) Comparative in-vitro activity of carbapenem antibiotics against respiratory pathogens isolated between 1999 and 2000. J Infect Chemother 7: 267–271

    Article  PubMed  CAS  Google Scholar 

  50. Sato N, Kijima K, Koresawa T, et al (2008) Population pharmacokinetics of tebipenem pivoxil (me1211), a novel oral carbapenem antibiotic, in pediatric patients with otolaryngological infection or pneumonia. Drug metabolism and pharmacokinetics 23: 434–446

    Article  PubMed  CAS  Google Scholar 

  51. Koga T, Masuda N, Kakuta M, Namba E, Sugihara C, Fukuoka T (2008) Potent in vitro activity of tomopenem (cs-023) against methicillin-resistant staphylococcus aureus and pseudomonas aeruginosa. Antimicrob Agents Chemother 52: 2849–2854

    Article  PubMed  CAS  Google Scholar 

  52. Ueda Y, Sunagawa M (2003) In vitro and in vivo activities of novel 2-(thiazol-2-ylthio)-1beta-methylcarbapenems with potent activities against multiresistant gram-positive bacteria. Antimicrob Agents Chemother 47: 2471–2480

    Article  PubMed  CAS  Google Scholar 

  53. Morrissey I, Biek D, Janes R (2009) Me1036, a novel carbapenem, with enhanced activity against clinical isolates causing bacteraemic community-acquired pneumonia. J Antimicrob Chemother 64: 209–210

    Article  PubMed  CAS  Google Scholar 

  54. Livermore DM, Mushtaq S, Warner M (2009) Activity of the anti-mrsa carbapenem razupenem (ptz601) against enterobacteriaceae with defined resistance mechanisms. J Antimicrob Chemother 64: 330–335

    Article  PubMed  CAS  Google Scholar 

  55. Babini GS, Yuan M, Livermore DM (1998) Interactions of beta-lactamases with sanfetrinem (gv 104326) compared to those with imipenem and with oral beta-lactams. Antimicrob Agents Chemother 42: 1168–1175

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Bassetti, M., Ginocchio, F., Mikulska, M. (2011). New Treatment Options against Gram-negative Organisms. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2011. Annual Update in Intensive Care and Emergency Medicine 2011, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18081-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18081-1_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18080-4

  • Online ISBN: 978-3-642-18081-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics