Skip to main content

On Some Local, Global and Regularity Behaviour of Some Classes of Covariance Functions

  • Conference paper
  • First Online:
Advances and Challenges in Space-time Modelling of Natural Events

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 207))

Abstract

Two critical properties of stationary random fields are their degree of smoothness and the rate of decay of correlation at long lags. These properties are in turn closely connected to the behaviour of the random fields’ spectral densities at infinity and at the origin, respectively. Many standard models have flexibility at one but not both of these scales. Recent works have proposed a number of models with at least some flexibility at both scales. This chapter summarizes some of these proposed models and analyzes their local and global behaviour, both in terms of their covariance functions and the associated spectra. Some ways to obtain models allowing greater flexibility are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, R.J.: The Geometry of Random Fields, Chichester: Wiley (1981)

    MATH  Google Scholar 

  2. Anh, V.V., Ruiz-Medina, M.D. and Angulo, J.M.: Covariance factorization and abstract representation of generalized random fields. Bull. Autral. Math. Soc. 62, 319–334 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayache, A., Xiao, Y.: Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets, J. Fourier Anal. Appl. 11, 407–439 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berg, C., Mateu, J., Porcu, E.: The Dagum family of isotropic correlation functions. Bernoulli 14, (4), 1134–1149 (2008)

    Google Scholar 

  5. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, New York (1987)

    MATH  Google Scholar 

  6. Buhmann, M. A new class of radial basis functions with compact support. Math. Comp. 70, 307–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christakos, G.: On the problem of permissible covariance and variogram models, Water Resour. Res. 20, 2, 251–265 (1984)

    Article  MathSciNet  Google Scholar 

  8. Christakos G, Hristopoulos D.T.: Spatiotemporal environmental health modeling: a tractatus stochasticus, Kluwer, Boston.

    Google Scholar 

  9. Davies,S. and Hall, P. (1999), Fractal analysis of surface roughness by using spatial data, J. R. Statist. Soc. B 61, 3–37

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, J., Zhang, H. and Mandrekar, V. (2009). Infill asymptotic properties of tapered maximum likelihood estimators. Ann. Statist. 37(6a) 3330–3361

    Google Scholar 

  11. Erdogan, M.B. and Ostrovskii, I.V. (1998), Analytic and asymptotic properties of generalized Linniks probability density, J. Math. Anal. Appl. 217, 555–578

    Article  MathSciNet  MATH  Google Scholar 

  12. Falconer, K.J.: Fractal geometry, John Wiley &Sons Inc., Hoboken, NJ (2003)

    Google Scholar 

  13. Fernández-Pascual, R., Ruiz-Medina, M.D., Angulo, J.M.: Estimation of intrinsic processes affected by additive fractal noise. J. Multivariate Anal. 971361–1381 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gneiting, T.: Power-law correlations, related models for long-range dependence and their simulation. Journal of Appl. Probab. 37, 1104–1109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gneiting, T.: Compactly supported correlation functions. J. Multivariate Anal. 83, 493–508 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gneiting, T., Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46, 269–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guttorp, P., Gneiting, T.: Studies in the history of probability and statistics XLIX: On the Matérn correlation family. Biometrika 93, 989–995 (2006)

    Article  MathSciNet  Google Scholar 

  18. Gradshteyn, I.S., Ryzhik, I.M.: Tables of integrals, series and products, sixth edition, Academic Press, San Diego (2000)

    Google Scholar 

  19. Guelfand, M., Vilenkin, N.Y.: Les Distributions 4, Dunod, Paris (1967)

    MATH  Google Scholar 

  20. Hall, P., Wood, A. On the performance of box-counting estimators of fractal dimension. Biometrika 80, 246–252 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Houdre, C., Villa, J.: An example of infinite dimensional quasi-helix, Contemporary Math. 336, 195–201 (2003)

    Article  MathSciNet  Google Scholar 

  22. Ibragimov, I. A., Rozanov, Y. A. Gaussian Random Processes, trans. A. B. Aries. Springer, New York (1978)

    Book  Google Scholar 

  23. Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1995)

    MATH  Google Scholar 

  24. Kang, SC., Koh, H.M., Choo, J.F.: An efficient response surface method using moving least squares approximation for structural reliability analysis. Probabilistic Engineering Mechanics, in press. (1995)

    Google Scholar 

  25. Kent, J.T., Wood, A.T.A.: Estimating fractal dimension of a locally self-similar Gaussian process by using increments. Statistics Research Report SRR 034–95, Centre for Mathematics and Its Applications, Austalia National University, Canberra (1995); J. R. Statist. Soc. B 59679–699 (1995)

    Google Scholar 

  26. S. Kotz, S. Ostrovskii, I.V., Hayfavi, A.: Analytic and asymptotic properties of Linniks probability density I, II. J. Math. Anal. Appl. 193, 353–371, 497–521 (1995)

    Google Scholar 

  27. Leonenko, N.: Limit Theorems for Random Fields with Singular Spectrum, Kluwer Academic Publishers, Boston (1999)

    Book  MATH  Google Scholar 

  28. Lim, S.C., Teo, L.P.: Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure. Submitted to Arxiv, 2008, Arxiv number arXiv:0807.0022

    Google Scholar 

  29. Lim, S.C., Teo, L.P.: Generalized Whittle-Matern random field as a model of correlated fluctuations. Submitted to Arxiv, 2008, Arxiv number arXiv:0901.3581

    Google Scholar 

  30. Lim S.C., Li, M.: Generalized Cauchy process and its application to relaxation phenomena. J. Phys. A: Math. Gen. 39, 2935–2951 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.C. Lim, Muniandy, S.M.: (2003), Generalized Ornstein–Uhlenbeck processes and associated selfsimilar processes. J. Phys. A: Math. Gen. 36, 3961–3982

    Article  MathSciNet  MATH  Google Scholar 

  32. Matheron, G. The intrinsic random functions and their applications. Adv. Appl. Probab. 5(3), 439–468 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moak, D.: Completely monotonic functions of the form (1 +  | x | )β | x | α. Rocky Mt. J. Math. 17, 719–725 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Matérn, B.: Spatial Variation, 2nd edition. Berlin: Springer (1986)

    MATH  Google Scholar 

  35. Ostoja-Starzewski, M.: Microstructural randomness versus representative volume element in thermomechanics. ASME J. Appl. Mech. 69, 25–35 (2002)

    Article  MATH  Google Scholar 

  36. Ostoja-Starzewski, M.: Towards thermomechanics of fractal media. Journal of Applied Mathematics and Physics. 58, 1085–1096 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. Chapman & Hall/CRC Press (2008)

    Google Scholar 

  38. Ostrovskii, I.V.: Analytic and asymptotic properties of multivariate Linniks distribution. Math. Phys. Anal. Geom. 2, 436–455 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Porcu, E., Mateu, J., Zini, A., Pini, R.: Modelling spatio-temporal data: A new variogram and covariance structure roposal. Stat. Probabil. Lett. 77(1), 83–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Porcu, E., Mateu, J. and Nicolis, O.: A note on decoupling of local and global behaviours for the Dagum Random Field. Probabilist. Eng. Mech. 22(4), 320–329 (2007)

    Article  Google Scholar 

  41. Rytov, S.M., Kravtsov, Y.A., Tatarskii, V.I.: Principles of Statistical Radiophysics. 4, Springer, Berlin (1989)

    Google Scholar 

  42. Ruiz-Medina, M.D., Angulo, J.M., Anh, V.V.: Fractional-order regularization and wavelet approximation to the inverse estimation problem for random fields. J. Multivariate Anal. 85, 192–216 (2003a)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ruiz-Medina, M.D., Angulo, J.M., Anh, V.V.: Stochastic Fractional-order differential models on fractals. Theor. Probab. Appl. 67, 130–146 (2002)

    MATH  Google Scholar 

  44. Ruiz-Medina, M.D., Angulo, J.M., Anh, V.V.: Fractional generalized random fields on bounded domains. Stoch. Anal. Appl. 21, 465–492 (2003b)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ruiz-Medina, M.D., Angulo, J.M., Anh, V.V.: Karhunen-Loéve-Type representations on fractal domains. Stoch. Anal. Appl. 24, 195–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ruiz-Medina M.D., Anh V.V., Angulo, J.M. Fractal random fields on domains with fractal boundary. Infin. Dimen. Anal. Q.U. 7, 395–417 (2004)

    Google Scholar 

  47. Ruiz-Medina, M.D., Angulo, J.M., Fernández-Pascual, R.: Wavelet-vaguelette decomposition of spatiotemporal random fields. Stoch. Env. Res. Risk. A. 21, 273–281 (2007)

    Article  MATH  Google Scholar 

  48. Ruiz Medina, M.D., Porcu, E., Fernandez-Pascual, R.: The Dagum and auxiliary covariance families: towards reconciling two-parameter models that separate fractal dimension and Hurst effect. Probabilistic Engineering Mechanics, 26, 259–268 (2011)

    Article  Google Scholar 

  49. Schaback, R.: The missing Wendland functions. Adv. Comput. Math., (to appear). DOI 10.1007/s10444-009-9142-7 (2009)

    Google Scholar 

  50. Scheuerer, M. A comparison of models and methods for spatial interpolation in statistics and numerical analysis. Doctoral thesis, University of Goettingen (2009)

    Google Scholar 

  51. Shkarofsky, I.P. Generalized turbulence space-correlation and wave-number spectrumfunction pairs. Can. J. Phys. 46, 2133–53 (1968)

    Article  Google Scholar 

  52. Schoenberg, I.J.: Metric Spaces and Completely Monotone Functions, Ann. Math. 39(4) 811–841 (1938)

    Article  MathSciNet  Google Scholar 

  53. G. Samorodnitsky, Taqqu, M.: Stable non-Gaussian Random Processes, Chapman &Hall, London (1994)

    Google Scholar 

  54. Stein, M.L.: Asymptotically efficient prediction of a random field with a misspecified covariance function. Ann. Stat. 16, 55–63 (1988a)

    Article  MATH  Google Scholar 

  55. Stein, M.L.: Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999)

    Book  Google Scholar 

  56. Stein, M. L.: Equivalence of Gaussian measures for some nonstationary random fields. J. Stat. Plan. Infer. 123, 1–11 (2004)

    Article  MATH  Google Scholar 

  57. Wendland, H.: Scattered data Approximation, Cambridge University press (1994)

    Google Scholar 

  58. Whittle, P.: Stochastic processes in several dimensions. Bull. Inst. Int. Statist. 40, 974–994 (1963)

    MathSciNet  Google Scholar 

  59. Wood, A.T.A., Chan, G.: Increment-based estimators of fractal dimension for twodimensional surface data. Stat. Sinica 10, 343–376 (1994)

    MathSciNet  Google Scholar 

  60. Yadrenko, M.: Spectral Theory of Random Fields. New York, NY : Optimization Software (1983)

    MATH  Google Scholar 

  61. Yaglom, A.M.: An Introduction to the Theory of Stationary Random Functions, Dover Phoenix Editions (1987)

    Google Scholar 

  62. Zhang, H. (2004), Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics, J. Am. Stat. Assoc. 99, 250–261.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Porcu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Porcu, E., Stein, M.L. (2012). On Some Local, Global and Regularity Behaviour of Some Classes of Covariance Functions. In: Porcu, E., Montero, J., Schlather, M. (eds) Advances and Challenges in Space-time Modelling of Natural Events. Lecture Notes in Statistics(), vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17086-7_9

Download citation

Publish with us

Policies and ethics