Skip to main content

Molecular Mechanisms for the Initiation and Maintenance of Long-Term Memory Storage

  • Chapter
  • First Online:
Two Faces of Evil: Cancer and Neurodegeneration

Abstract

As a result of advances in cellular, molecular and systems biology the mechanisms underlying the initial storage, maintenance and recall of memories are now beginning to be understood. To obtain these insights several model systems and methodologies have been used. Here we briefly summarize this recent progress based on study of two model systems, the gill-withdrawal reflex of Aplysia and hippocampal based spatial memory storage in the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberini CM, Ghirardi M, Metz R, Kandel ER (1994) C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76:1099–1114

    Article  PubMed  CAS  Google Scholar 

  • Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158

    Article  PubMed  CAS  Google Scholar 

  • Bailey CH, Bartsch D, Kandel ER (1996) Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci USA 93:13445–13452

    Article  PubMed  CAS  Google Scholar 

  • Bally-Cuif L, Schatz WJ, Ho RK (1998) Characterization of the zebrafish Orb/CPEB-related RNA binding protein and localization of maternal components in the zebrafish oocyte. Mech Dev 77:31–47

    Article  PubMed  CAS  Google Scholar 

  • Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703

    Article  PubMed  CAS  Google Scholar 

  • Bartsch D, Ghirardi M, Skehel PA, Karl KA, Herder SP, Chen M, Bailey CH, Kandel ER (1995) Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83:979–992

    Article  PubMed  CAS  Google Scholar 

  • Bartsch D, Casadio A, Karl KA, Serodio P, Kandel ER (1998) CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95:211–223

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV (2003) A journey from neocortex to hippocampus. Philos Trans R Soc Lond B Biol Sci 358:621–623

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL, Morris RG (2003) Introduction Long-term potentiation and structure of the issue. Philos Trans R Soc Lond B Biol Sci 358:607–611

    Article  PubMed  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory – long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    Article  PubMed  CAS  Google Scholar 

  • Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, Bailey CH, Kandel ER (1999) A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99:221–237

    Article  PubMed  CAS  Google Scholar 

  • Chang JS, Tan L, Wolf MR, Schedl P (2001) Functioning of the Drosophila orb gene in gurken mRNA localization and translation. Development 128:3169–3177

    PubMed  CAS  Google Scholar 

  • Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778

    Article  PubMed  CAS  Google Scholar 

  • Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721

    Article  PubMed  CAS  Google Scholar 

  • Davis RL, Dauwalder B (1991) The Drosophila dunce locus: learning and memory genes in the fly. Trends Genet 7:224–229

    PubMed  CAS  Google Scholar 

  • Du Z, Park KW, Yu H, Fan Q, Li L (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 40:460–465

    Article  PubMed  CAS  Google Scholar 

  • Eagleston SS, Cox BS, Tuite MF (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18:1974–1981

    Article  Google Scholar 

  • Edskes HK, Gray VT, Wickner RB (1999) The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc Natl Acad Sci USA 96:1498–1503

    Article  PubMed  CAS  Google Scholar 

  • Fox CA, Sheets MD, Wickens MP (1989) Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev 3:2151–2162

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  PubMed  CAS  Google Scholar 

  • Frost WN, Castellucci VF, Hawkins RD, Kandel ER (1985) Monosynaptic connections made by the sensory neurons of the gill- and siphon-withdrawal reflex in Aplysia participate in the storage of long-term memory for sensitization. Proc Natl Acad Sci USA 82:8266–8269

    Article  PubMed  CAS  Google Scholar 

  • Gebauer F, Richter JD (1996) Mouse cytoplasmic polyadenylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA. Proc Natl Acad Sci USA 93:14602–14607

    Article  PubMed  CAS  Google Scholar 

  • Giustetto M, Hegde AN, Si K, Casadio A, Inokuchi K, Pei W, Kandel ER, Schwartz JH (2003) Axonal transport of eukaryotic translation elongation factor 1alpha mRNA couples transcription in the nucleus to long-term facilitation at the synapse. Proc Natl Acad Sci USA 100:13680–13685

    Article  PubMed  CAS  Google Scholar 

  • Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long-term memory – a molecular framework. Nature 322:419–422

    Article  PubMed  CAS  Google Scholar 

  • Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23:39–71

    Article  PubMed  CAS  Google Scholar 

  • Griffith JS (1967) Self-replication and scrapie. Nature 215:1043–1044

    Article  PubMed  CAS  Google Scholar 

  • Groisman I, Jung MY, Sarkissian M, Cao Q, Richter JD (2002) Translational control of the embryonic cell cycle. Cell 109:473–483

    Article  PubMed  CAS  Google Scholar 

  • Hake LE, Richter JD (1994) CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79:617–627

    Article  PubMed  CAS  Google Scholar 

  • Hegde AN, Goldberg AL, Schwartz JH (1993) Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc Natl Acad Sci USA 90:7436–7440

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    Article  PubMed  CAS  Google Scholar 

  • Huang YS, Jung MY, Sarkissian M, Richter JD (2002) N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J 21:2139–2148

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Squire LR (2000) Neuroscience: breaking down scientific barriers to the study of brain and mind. Science 290:1113–1120

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Lim CS, Park H, Lee JA, Han JH, Kim H, Cheang YH, Lee YS, Ko HG, Jang DH, Kim H, Miniaci MC, Bartsch D, Kim E, Bailey CH, Kandel ER, Kaang BK (2007) Nuclear translocation of CAM-associated protein activates transcription for long-term facilitation in Aplysia. Cell 129:801–812

    Article  PubMed  CAS  Google Scholar 

  • Li L, Lindquist S (2000) Creating a protein-based element of inheritance. Science 287:661–664

    Article  PubMed  CAS  Google Scholar 

  • Liebman SW, Sherman F (1979) Extrachromosomal psi+ determinant suppresses nonsense mutations in yeast. J Bacteriol 139:1068–1071

    PubMed  CAS  Google Scholar 

  • Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, Bailey CH, Kandel ER (1997) Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91:927–938

    Article  PubMed  CAS  Google Scholar 

  • McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD (1989) Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev 3:803–815

    Article  PubMed  CAS  Google Scholar 

  • Milner B, Petrides M, Smith ML (1985) Frontal lobes and the temporal organization of memory. Hum Neurobiol 4:137–142

    PubMed  CAS  Google Scholar 

  • Miniaci MC, Kim JH, Puthanveettil SV, Si K, Zhu H, Kandel ER, Bailey CH (2008) Sustained CPEB-dependent local protein synthesis is required to stabilize synaptic growth for persistence of long-term facilitation in Aplysia. Neuron 59:1024–1036

    Article  PubMed  CAS  Google Scholar 

  • Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, Schacher S (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234:1249–1254

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Krishnan R, Lemke EA, Lindquist S, Deniz AA (2007) A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc Natl Acad Sci USA 104:2649–2654

    Article  PubMed  CAS  Google Scholar 

  • Namy O, Galopier A, Martini C, Matsufuj S, Fabret C, Rousset JP (2008) Epigenetic control of polyamines by the prion [PSI(+)]. Nat Cell Biol 10:1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Patino MM, Liu JJ, Glover JR, Lindquist S (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626

    Article  PubMed  CAS  Google Scholar 

  • Polster MR, Nadel L, Schacter DL (1991) Cognitive neuroscience analyses of memory – a historical perspective. J Cogn Neurosci 3:95–116

    Article  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  PubMed  CAS  Google Scholar 

  • Puthanveettil SV, Monje FJ, Miniaci MC, Choi YB, Karl KA, Khandros E, Gawinowicz MA, Sheetz MP, Kandel ER (2008) A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrawal reflex. Cell 135:960–973

    Article  PubMed  CAS  Google Scholar 

  • Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E (2009) Characterization of small RNAs in aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63:803–817

    Article  PubMed  CAS  Google Scholar 

  • Roberts BT, Wickner RB (2003) Heritable activity: a prion that propagates by covalent autoactivation. Genes Dev 17:2083–2087

    Article  PubMed  CAS  Google Scholar 

  • Ross ED, Edskes HK, Terry MJ, Wickner RB (2005) Primary sequence independence for prion formation. Proc Natl Acad Sci USA 102:12825–12830

    Article  PubMed  CAS  Google Scholar 

  • Santoso A, Chien P, Osherovich LZ, Weissman JS (2000) Molecular basis of a yeast prion species barrier. Cell 100:277–288

    Article  PubMed  CAS  Google Scholar 

  • Saupe SJ (2000) Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 64:489–502

    Article  PubMed  CAS  Google Scholar 

  • Schroeder KE, Condic ML, Eisenberg LM, Yost HJ (1999) Spatially regulated translation in embryos: asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev Biol 214:288–297

    Article  PubMed  CAS  Google Scholar 

  • Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Shkundina IS, Ter-Avanesyan MD (2007) Prions. Biochemistry (Mosc) 72:1519–1536

    Article  CAS  Google Scholar 

  • Shorter J, Lindquist S (2005) Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 6:435–450

    Article  PubMed  CAS  Google Scholar 

  • Si K, Giustetto M, Etkin A, Hsu R, Janisiewicz AM, Miniaci MC, Kim JH, Zhu H, Kandel ER (2003a) A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia. Cell 115:893–904

    Article  PubMed  CAS  Google Scholar 

  • Si K, Lindquist S, Kandel ER (2003b) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115:879–891

    Article  PubMed  CAS  Google Scholar 

  • Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140:421–435

    Article  PubMed  CAS  Google Scholar 

  • Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:163–172

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386

    Article  PubMed  CAS  Google Scholar 

  • Stebbins-Boaz B, Hake LE, Richter JD (1996) CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J 15:2582–2592

    PubMed  CAS  Google Scholar 

  • Tan L, Chang JS, Costa A, Schedl P (2001) An autoregulatory feedback loop directs the localized expression of the Drosophila CPEB protein Orb in the developing oocyte. Development 128:1159–1169

    PubMed  CAS  Google Scholar 

  • True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483

    Article  PubMed  CAS  Google Scholar 

  • True HL, Berlin I, Lindquist SL (2004) Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431:184–187

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Fletterick RJ (1997) The design plan of kinesin motors. Annu Rev Cell Dev Biol 13:745–777

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang F, Arterburn L, Wollmann R, Ma J (2006) The interaction between cytoplasmic prion protein and the hydrophobic lipid core of membrane correlates with neurotoxicity. J Biol Chem 281:13559–13565

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Wells D, Tay J, Mendis D, Abbott MA, Barnitt A, Quinlan E, Heynen A, Fallon JR, Richter JD (1998) CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 21:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Yin JC, Wallach JS, Del Vecchio M, Wilder EL, Zhou H, Quinn WG, Tully T (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79:49–58

    Article  PubMed  CAS  Google Scholar 

  • Yin JC, Del Vecchio M, Zhou H, Tully T (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81:107–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Kandel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Puthanveettil, S., Kandel, E. (2011). Molecular Mechanisms for the Initiation and Maintenance of Long-Term Memory Storage. In: Curran, T., Christen, Y. (eds) Two Faces of Evil: Cancer and Neurodegeneration. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16602-0_13

Download citation

Publish with us

Policies and ethics