Skip to main content

Magnetresonanztomographie (MRT)

  • Chapter
Medizintechnik

Zusammenfassung

Der theoretische Physiker Wolfgang Pauli postulierte 1924 die Existenz eines Kernspins, ein Jahr nachdem George Eugene Uhlenbeck und Samuel A. Goudsmit das Konzept des Elektronenspins vorgestellt hatten [1]. Im Jahre 1933 gelanges Otto Stern und Walther Gerlach, den Kernspin durch Ablenkung eines Strahls von Wasserstoffmolekülen nach zuweisen [2]. Im Jahre 1937 gelang Isidor Isaac Rabi an der Columbia University in New York die Messung des »nuclear magnetic moments« [3], aber erst, als er von Cornelis Jacobus Gorter unterstützt wurde, der mit ähnlichen Expe rimenten keinen Erfolg gehabt hatte. Gorter war der Erste, der den Ausdruck »nuclear magnetic resonance - NMR« in Veröffentlichungen verwendete [4]. Die für die NMR; ausschlaggebenden Entdeckungen werden Felix Bloch und Edward M. Purcell zugeschrieben, die 1946 den Kernspin’. bzw. die Magnetresonanz experimentell nachgewiesen [5] und dafür im Jahre 1952 den Nobelpreis erhalten haben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Pauli W (1924) Entdeckung des »Kernspins« zur Erklärung der Hyperfeinstruktur der Atomspektren. Naturwissenschaften, Bd. 12

    Google Scholar 

  2. Gerlach W, Stern O (1924) Über die Richtungsquantelung im Magnetfeld. Ann Phys 74: 673–699 (s. auch: dies [1922] Das mag netische Moment des Silberatoms. Z Physik V9, N1, 353–355)

    Google Scholar 

  3. Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53:318

    Article  Google Scholar 

  4. Gorter CJ, Broer LJF (1942) Negative result of an attempt to observe nuclear magnetic resonance in solids. Physica (The Hague) 9:591

    Article  Google Scholar 

  5. Bloch F, Hanson WW, Packard M (19En) Nuclear induction. Phys Rev 69:127 (s. auch: Purcell EM,Torrey HC, Pound RV [1964] Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38)

    Google Scholar 

  6. Bloch F (1946) Nuclear Induction. Phys Review 70,460–473

    Article  Google Scholar 

  7. Odeblad E, Bhar BN, Lindström G (1956) Proton magnetic resonance of human red blood cells in heavy water exchange experiments. Arch Biochem Biophys 63: 221–225

    Article  Google Scholar 

  8. Damadian RV (1971) Tumor detection by nuclear magnetic re sonance. Science 171: 1151–1153 (s. auch: Hollis DP, Economou JS, Parks LC, Eggleston JC, Saryan LA, Czeisler JL [1973] Nuclear magnetic resonance studies of several experimental and human malignant tumors. Cancer Research 33: 2156–2160)

    Google Scholar 

  9. Damadian R (1974) United States Patent no. 3789832. Filed 17 March 1972, awarded 5 February 1974. Apparatus and method for detecting cancer in tissue. Inventor: Raymond V. Damadian

    Google Scholar 

  10. Lauterbur PC (1973) Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 242:190–191

    Article  Google Scholar 

  11. Kumar A, Welti D, Ernst RR (1975) NMR Fourier zeugmatography. J Magn Res 18:69–83

    Google Scholar 

  12. Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3(4): 604–18

    Article  Google Scholar 

  13. Kuhl CK,Träber F, Schild HH (2008) Whole-body high-field-strength (3.0-T) MR Imaging in Clinical Practice. Part I.Technical considerations and clinical applications. Radiology 246(3): 675–96

    Article  Google Scholar 

  14. Hennig J, Welz AM, Schultz G, Korvink J, Liu Z, Speck O, Zaitsev M (2008) Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. MAGMA 21 (1 -2): 5–14

    Article  Google Scholar 

  15. Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3(6): 877–81

    Article  Google Scholar 

  16. Prince MR, Narasimham DL, Stanley JC, Chenevert TL, Williams DM, Marx MV, Cho KJ (1995) Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 197(3): 785–92

    Google Scholar 

  17. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5): 952–62

    Article  Google Scholar 

  18. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6): 1202–10

    Article  Google Scholar 

  19. Vassalo G, Boltano M, Linardos J, Damadian J, Cohen JJ, Damadian RV (1996) Control of MRI System, U.S. Patent 6,157,194, 2000

    Google Scholar 

  20. Empfehlungen der Strahlenschutzkommission (Orientierungshilfe für bildgebende Untersuchungen). BAnz. Nr. 5a vom 12.01.2010 S. 0001

    Google Scholar 

  21. Schubert R (Hrsg) (2008) Indikationen zur MRT. Wissenschaftsverlag GmbH, Krefeld

    Google Scholar 

  22. Einheitlicher Bewertungsmaßstab (EBM), Arztgruppen-EBM, Radiologe, KBV- Kassenärztliche Bundesvereinigung, Berlin 2010

    Google Scholar 

  23. 2001, Nr. 28: S. 2013; Richtlinien des Bundesausschusses der Ärzte und Krankenkassen über Kriterien zur Qualitätsbeurteilung in der Kernspintomographie gemäß § 136 SGB V i.V.m. § 92 Abs. 1 SGB V (Qualitätsbeurteilungs-Richtlinie für die Kernspintomographie)

    Google Scholar 

  24. Hahn E (1999) How I stumbled across the Spin Echo. Third Annual Lauterbur Lecture, Proceedings of the International Society of Magnetic Resonance in Medicine. Philadelphia

    Google Scholar 

  25. Kuchel PW, Chapman BE, Bubb WA, Hansen PE, Durrant CJ, Hertzberg MP (2003). Magnetic susceptibility: solutions, emulsions, and cells. Concepts Magn Reson A 18: 56–71

    Article  Google Scholar 

  26. Runge VM, Clanton JA, Herzer WA, Gibbs SJ, Price AC, Partain CL, James AE Jr. (1984) Intravascular contrast agents suitable for magnetic resonance imaging. Radiology 153(1): 171–6

    Google Scholar 

  27. Niendorf HP, Felix R, Laniado M, Schörner W, Claussen C, Weinmann HJ (1985) Gadolinium-DTPA: a new contrast agent for magnetic resonance imaging. Radiat Med 3(1): 7–12

    Google Scholar 

  28. Gadian DG, Payne JA, Bryant DJ, Young IR, Carr DH, Bydder GM (1985) Gadolinium-DTPA as a contrast agent in MR imaging - theoretical projections and practical observations. J Comput Assist Tomogr 9(2): 242–51

    Article  Google Scholar 

  29. Hennig J, Nauerth A, Friedburg H, Ratzel D (1984) Ein neues Schnellbildverfahren für die Kernspintomographie. Radiologe 24: 579–580

    Google Scholar 

  30. Melki PS, Mulkern RV, Panych LP, Jolesz FA (1991) Comparing the FAISE method with conventional dual-echo sequences. J Magn Reson Imaging 1: 319–326

    Article  Google Scholar 

  31. Constable RT,Gore JC (1992) The loss of small objects in variable TE imaging: implications for FSE,RARE, and EPI. Magn Reson Med 28: 9–24

    Article  Google Scholar 

  32. Haase A, Frahm J, Mathaei D et al. (1986) FLASH imaging. Rapid imaging using low flip-angle pulses. J Magn Reson 67: 256–266

    Google Scholar 

  33. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3): 612–8

    Article  Google Scholar 

  34. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation., Proc NatI Acad Sci USA 87(24): 9868–72

    Article  Google Scholar 

  35. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3): 803–12

    Article  Google Scholar 

  36. Brasch RC (1983) Work in progress: methods of contrast enhancement for NMR imaging and potential applications. A subject review. Radiology 147(3): 781–8

    Google Scholar 

  37. Knutsson L, Stählberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 23(1): 1–21

    Article  Google Scholar 

  38. Stark DD, Wittenberg J, Middleton MS, Ferrucci JT Jr. (1986) Liver metastases: detection by phase-contrast MR imaging. Radiology 158(2): 327–32

    Google Scholar 

  39. Nitz WR (2003) Magnetresonanztomographie - Sequenzakronyme und weitere Kürzel. Radiologe 43: 745–765

    Article  Google Scholar 

  40. Bydder GM, Pennock JM, Steiner RE, Khenia S, Payne JA, Young IR (1985) The short TI inversion recovery sequence -an approach to MR imaging of the abdomen. Magn Reson Imaging 3(3): 251–4

    Article  Google Scholar 

  41. De Coene B, Hajnal JV, Gatehouse P, Longmore DB, White SJ, Oatridge A et al. (1992) MR of the brain using fluid-attenuated in version recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 13(6): 1555–64

    Google Scholar 

  42. Stejskal EO, Tanner JE (1965) Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. Journal of Chemical Physics 42, No. 1: 288–292

    Article  Google Scholar 

  43. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1): 259–67

    Article  Google Scholar 

  44. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2): 265–9

    Article  Google Scholar 

  45. Shellock FG (2001) Magnetic Resonance Procedures: Health Effects and Safety. CRC Press, Boca Raton

    Google Scholar 

  46. Wagner HJ, Kalinowski M, Klose KJ, Alfke H (2001) The use of gadolinium chelates for X-ray digital subtraction angiography. Invest Radiol 36(5): 257–65 (Erratum in: Invest Radiol 36[9]: 553)

    Google Scholar 

  47. Grobner T (2006) Gadolinium - a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis. Nephrol Dial Transplant 21:1104–1108

    Article  Google Scholar 

Weiterführende Literatur

  • Reimer P, Parizel PM, Stichnoth F (2010) Clinical MR Imaging: A Practical Approach. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Reiser MF, Semmler W, Hricak H (2008) Magnetic Resonance Tomography. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Oppelt A (Hrsg) (2005) Imaging Systems for Medical Diagnostics. Publicis Corporate Publishing, Erlangen

    Google Scholar 

  • Nitz WR, Runge VM, Schmeets SH, Faulkner WH, Desai NK (2005) Praxiskurs MRT. Thieme, Stuttgart

    Google Scholar 

  • Weishaupt D, Köchli C, Marincek B (2003) Wie funktioniert MRI? Springer, Berlin Heidelberg Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nitz, W.R. (2011). Magnetresonanztomographie (MRT). In: Kramme, R. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16187-2_19

Download citation

Publish with us

Policies and ethics