Skip to main content

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 209))

Abstract

The skin and the mucosa represent anatomical barriers against invaders from the atmosphere or from the fluid-rich environment as the first line of defence (Turvey and Broide 2010). The barriers deliver mechanical and chemical protection by cell–cell coherence, and by secretion of unspecific anti-pathogenic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antczak M, van Blerkom J (2000) The vascular character of ovarian follicular granulosa cells: phenotypic and functional evidence for an endothelial-like cell population. Hum Reprod 15:2306–2318

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ze'ev A, Amsterdam A (1989) Regulation of cytoskeletal protein organization and expression in human granulosa. Endocrinology 124:1033–1041

    Article  PubMed  Google Scholar 

  • Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    Article  CAS  PubMed  Google Scholar 

  • Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, Heine H, Brandt E, Reiling N (2006) The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108:965–973

    Article  CAS  PubMed  Google Scholar 

  • Boyer A, Lapointe E, Zheng X, Cowan RG, Li H, Quirk SM, Demayo FJ, Richards JS, Boerboom D (2010) WNT4 is required for normal ovarian follicle development and female fertility. FASEB J [Epub ahead of print]

    Google Scholar 

  • Chan CW, Housseau F (2008) The ‘kiss of death’ by dendritic cells to cancer cells. Cell Death Differ 15:58–69

    Article  CAS  PubMed  Google Scholar 

  • Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, Kissenpfennig A, Barbaroux JB, Groves R, Geissmann F (2009) Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 206:3089–3100

    Article  CAS  PubMed  Google Scholar 

  • Craig J, Orisaka M, Wang H, Orisaka S, Thompson W, Zhu C, Kotsuji F, Tsang BK (2007) Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front Biosci 12:3628–3639

    Article  CAS  PubMed  Google Scholar 

  • Czernobilsky B, Moll R, Levy R, Franke WW (1985) Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur J Cell Biol 37:175–190

    CAS  PubMed  Google Scholar 

  • Dieterlen-Lièvre F, Pouget C, Bollérot K, Jaffredo T (2006) Are intra-aortic hemopoietic cells derived from endothelial cells during ontogeny? Trends Cardiovasc Med 16:128–139

    Article  PubMed  Google Scholar 

  • Endo Y, Takahashi M, Fujita T (2006) Lectin complement system and pattern recognition. Immunobiology 211:283–293

    Article  CAS  PubMed  Google Scholar 

  • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  CAS  PubMed  Google Scholar 

  • Gordon MD, Dionne MS, Schneider D, Nusse R (2005) WntD is a feedback inhibitor of Dorsal/NF-kappaB in Drosophila development and immunity. Nature 437:746–749

    Article  CAS  PubMed  Google Scholar 

  • Grissell TV, Chang AB, Gibson PG (2007) Reduced toll-like receptor 4 and substance P gene expression is associated with airway bacterial colonization in children. Pediatr Pulmonol 42:380–385

    Article  PubMed  Google Scholar 

  • Hajishengallis G, Lambris JD (2010) Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 31:154–163

    Article  CAS  PubMed  Google Scholar 

  • Hanukoglu I (2006) Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab Rev 38:171–196

    Article  CAS  PubMed  Google Scholar 

  • Hawlisch H, Köhl J (2006) Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol Immunol 43:13–21

    Article  CAS  PubMed  Google Scholar 

  • He J, Xiao Z, Chen X, Chen M, Fang L, Yang M, Lv Q, Li Y, Li G, Hu J, Xie X (2010) The expression of functional toll-like receptor 4 is associated with proliferation and maintenance of stem cell phenotype in endothelial progenitor cells (EPCs). J Cell Biochem 2010 [Epub ahead of print]

    Google Scholar 

  • Herath S, Williams EJ, Lilly ST, Gilbert RO, Dobson H, Bryant CE, Sheldon IM (2007) Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134:683–693

    Article  CAS  PubMed  Google Scholar 

  • Hoshino K, Kaisho T (2008) Nucleic acid sensing Toll-like receptors in dendritic cells. Curr Opin Immunol 20:408–413

    Article  CAS  PubMed  Google Scholar 

  • Iijima N, Thompson JM, Iwasaki A (2008) Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol 1:451–459

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    Article  CAS  PubMed  Google Scholar 

  • Jahn L, Fouquet B, Rohe K, Franke WW (1987) Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man. Differentiation 36:234–254

    Article  CAS  PubMed  Google Scholar 

  • Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Khan-Dawood FS, Yusoff DM, Tabibzadeh S (1996) Immunohistochemical analysis of the microanatomy of primate ovary. Biol Reprod 54:734–742

    Article  CAS  PubMed  Google Scholar 

  • Knapp AC, Franke WW (1989) Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation. Cell 59:67–79

    Article  CAS  PubMed  Google Scholar 

  • Kohchi C, Inagawa H, Nishizawa T, Soma G (2009) ROS and innate immunity. Anticancer Res 29:817–821

    CAS  PubMed  Google Scholar 

  • Liu Z, Shimada M, Richards JS (2008) The involvement of the Toll-like receptor family in ovulation. J Assist Reprod Genet 25:223–228

    Article  PubMed  Google Scholar 

  • Löffler S, Horn LC, Weber W, Spanel-Borowski K (2000) The transient disappearance of cytokeratin in human fetal and adult ovaries. Anat Embryol (Berl) 201:207–215

    Article  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R (2010a) Inflammation 2010: new adventures of an old flame. Cell 140:771–776

    Article  CAS  PubMed  Google Scholar 

  • Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    Article  CAS  PubMed  Google Scholar 

  • Merad M, Manz MG (2009) Dendritic cell homeostasis. Blood 113:3418–3427

    Article  CAS  PubMed  Google Scholar 

  • Miller YI, Chang MK, Binder CJ, Shaw PX, Witztum JL (2003a) Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol 14:437–445

    Article  CAS  PubMed  Google Scholar 

  • O'Connor TM, O'Connell J, O'Brien DI, Goode T, Bredin C, Shanahan F (2004) The role of substance P in inflammatory disease. J Cell Physiol 201:167–180

    Article  PubMed  Google Scholar 

  • Oktem O, Oktay K (2008) The ovary: anatomy and function throughout human life. Ann NY Acad Sci 1127:1–9

    Article  CAS  PubMed  Google Scholar 

  • O'Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18

    Article  PubMed  Google Scholar 

  • Pan J, Auersperg N (1998) Spatiotemporal changes in cytokeratin expression in the neonatal rat ovary. Biochem Cell Biol 76:27–35

    Article  CAS  PubMed  Google Scholar 

  • Patton WF, Yoon MU, Alexander JS, Chung-Welch N, Hechtman HB, Shepro D (1990) Expression of simple epithelial cytokeratins in bovine pulmonary microvascular. J Cell Physiol 143:140–149

    Article  CAS  PubMed  Google Scholar 

  • Pouget C, Gautier R, Teillet MA, Jaffredo T (2006) Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Rajah R, Glaser EM, Hirshfield AN (1992) The changing architecture of the neonatal rat ovary during histogenesis. Dev Dyn 194:177–192

    CAS  PubMed  Google Scholar 

  • Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 29:11982–11992

    Article  CAS  PubMed  Google Scholar 

  • Reibiger I, Spanel-Borowski K (2000) Difference in localization of eosinophils and mast cells in the bovine ovary. J Reprod Fertil 118:243–249

    Article  CAS  PubMed  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    Article  CAS  PubMed  Google Scholar 

  • Richards JS, Liu Z, Shimada M (2008) Immune-like mechanisms in ovulation. Trends Endocrinol Metab 19:191–196

    Article  CAS  PubMed  Google Scholar 

  • Ricken AM, Spanel-Borowski K (1996) Immunolocalization of neurophysin in cytokeratin-positive luteal cells of cows. Histochem Cell Biol 106:487–493

    Article  CAS  PubMed  Google Scholar 

  • Ricken AM, Spanel-Borowski K, Saxer M, Huber PR (1995) Cytokeratin expression in bovine corpora lutea. Histochem Cell Biol 103:345–354

    Article  CAS  PubMed  Google Scholar 

  • Rock KL, Latz E, Ontiveros F, Kono H (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342

    Article  CAS  PubMed  Google Scholar 

  • Santini D, Ceccarelli C, Mazzoleni G, Pasquinelli G, Jasonni VM, Martinelli GN (1993) Demonstration of cytokeratin intermediate filaments in oocytes of the developing and adult human ovary. Histochemistry 99:311–319

    Article  CAS  PubMed  Google Scholar 

  • Serke H, Vilser H, Nowicki M, Hmeidan FA, Blumenauer V, Hummitzsch K, Lösche A, Spanel-Borowski K (2009) Granulosa cell subtypes respond by autophagy or cell death to oxLDL-dependent activation of the oxidized lipoprotein receptor 1 and toll-like 4 receptor. Autophagy 5:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Serke H, Bausenwein J, Hirrlinger J, Nowicki M, Vilser C, Jogschies P, Hmeidan FA, Blumenauer V, Spanel-Borowski K (2010) Granulosa cell subtypes vary in response to oxidized low-density lipoprotein as regards specific lipoprotein receptors and antioxidant enzyme activity. J Clin Endocrinol Metab 95:3480–3490

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Hernandez-Gonzalez I, Gonzalez-Robanya I, Richards JS (2006) Induced expression of pattern recognition receptors in cumulus oocyte complexes: novel evidence for innate immune-like functions during ovulation. Mol Endocrinol 20:3228–3239

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS (2008) Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 135:2001–2011

    Article  CAS  PubMed  Google Scholar 

  • Spanel-Borowski K, Ricken AM (1997) Varying morphology of bovine granulosa cell cultures. In: Motta PM (ed) Microscopy of reproduction and development: a dynamic approach, pp 91–100

    Google Scholar 

  • Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  CAS  PubMed  Google Scholar 

  • Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, Khoury JE, Golenbock DT, Moore KJ (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161

    Article  CAS  PubMed  Google Scholar 

  • Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  • Tsikolia N, Merkwitz C, Sass K, Sakurai M, Spanel-Borowski K, Ricken AM (2009) Characterization of bovine fetal Leydig cells by KIT expression. Histochem Cell Biol 132:623–632

    Article  CAS  PubMed  Google Scholar 

  • Tsung A, Zheng N, Jeyabalan G, Izuishi K, Klune JR, Geller DA, Lotze MT, Lu L, Billiar TR (2007) Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc Biol 81:119–128

    Article  CAS  PubMed  Google Scholar 

  • Turvey SE, Broide DH (2010) Innate immunity. J Allergy Clin Immunol 125:S24–32

    Article  PubMed  Google Scholar 

  • van den Hurk R, Dijkstra G, van Mill FN, Hulshof SC, van den Ingh TS (1995) Distribution of the intermediate filament proteins vimentin, keratin, and desmin. Mol Reprod Dev 41:459–467

    Article  PubMed  Google Scholar 

  • Vilser C, Hueller H, Nowicki M, Hmeidan FA, Blumenauer V, Spanel-Borowski K (2010) The variable expression of lectin-like oxidized low-density lipoprotein receptor (LOX-1) and signs of autophagy and apoptosis in freshly harvested human granulosa cells depend on gonadotropin dose, age, and body weight. Fertil Steril 93:2706–2715

    Article  CAS  PubMed  Google Scholar 

  • Wasiuk A, de Vries VC, Hartmann K, Roers A, Noelle RJ (2009) Mast cells as regulators of adaptive immunity to tumours. Clin Exp Immunol 155:140–146

    Article  CAS  PubMed  Google Scholar 

  • Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, Becker MS, Zanetta L, Dejana E, Gasson JC, Tallquist MD, Iruela-Arispe ML (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3:625–636

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Spanel-Borowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spanel-Borowski, K. (2011). Cytokeratin-Positive Cells (CK+) as Potential Dendritic Cells. In: Footmarks of Innate Immunity in the Ovary and Cytokeratin-Positive Cells as Potential Dendritic Cells. Advances in Anatomy, Embryology and Cell Biology, vol 209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16077-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16077-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16076-9

  • Online ISBN: 978-3-642-16077-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics