Skip to main content

A Framework for Assessing the Reliability of Mechatronic Systems

  • Conference paper
  • First Online:
Global Product Development

Abstract

This chapter proposes a framework for mechatronic systems reliability assessment at early stage of the design process. The approach provides to designers the product reliability indicator by using a semantic model that includes data related to its components characteristics and to their interactions. We focus on complex mechatronic systems consisting of sub-systems made of mechanical components, electronic devices and software modules. The paper presents two main problems to face for assessing complex products reliability: what decomposition strategy to use and how to estimate the components reliability. Then we estimate the product global reliability by considering separately mechanical components, electronic devices and the software. To test the approach, an application is outlined to estimate the reliability of a hard disk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohring, M., Lloyd, J.R. (2010) Reliability and Failure of Electronic Materials and Devices. Elsevier Science & Technology Books, Oxford, ISBN: 0120885743.

    Google Scholar 

  2. MIL-HDBK-217, the Military Handbook for “Reliability Prediction of Electronic Equipment” http://www.sqconline.com/download/

  3. Relex Reliability and Maintainability Prediction (2006) http://www.relex.com

  4. Item Software for Mechanical components NSWC 98 Standard (2006) http://www.itemuk.com

  5. Roy, G.R., Weckman, R.L., Shell, J.H. (June 2001) Marvel modeling the reliability of repairable systems in the aviation industry. Computers & Industrial Engineering, 40(1–2):51–63.

    Google Scholar 

  6. Coulibaly, A., Mutel, B., Ait-Kadi, D. (2007) Product modelling framework for behavioural performance evaluation at design stage. Computers in Industry, 58:567–577, http://www.sciencedirect.com

  7. OREDA (Offshore Reliability Data) (2009) http://www.sintef.no/static/tl/projects/oreda/

  8. NPRD-95 (Non electronic Parts Reliability) (1995) http://www.itemsoft.com/nonelec.html

  9. Tsai, C.-C., Lin, S.-C., Huang, H.-C., Cheng, Y.-M. (2009) Design and control of a brushless DC limited-angle torque motor with its application to fuel control of small-scale gas turbine engines. Mechatronics, 19:29–41.

    Article  Google Scholar 

  10. Lyonnet, P., Toscano, R., Maisonneuve, P.L., Lanternier, B. (2006) Modélisation de la fiabilité des macro-composants mécaniques à partir de modèles mathématiques et de réseaux de neurones, comparaisons des méthodes. Proceedings of 24th Machinery Vibration, Reliability and Maintenance, 25-27 Oct. 2006, Montréal, CMVA.

    Google Scholar 

  11. Cottet, F. (2001) LabVIEW: Programmation et applications. Ed. Dunod, ISBN 2-10-005667-0.

    Google Scholar 

  12. Zwingmann, X., AitKadi, D., Coulibaly, A., Mutel, B. (2008) Optimal disassembly sequencing strategy using constraint programming approach. Journal of Quality in Maintenance Engineering, 14(1):46–58, http://www.emeraldinsight.com/10.1108/13552510810861932

    Google Scholar 

  13. Naval Surface Warfare Center (NSWC), NSWC-98/LE1 (1998) Handbook of Reliability Prediction Procedures for Mechanical Equipment. Naval Surface Warfare Center, Washington, DC.

    Google Scholar 

  14. Le Guen, H. (2005) Validation d’un logiciel par le test statistique d’usage: de la Modélisation à la décision de livraison. Thèse de Doctorat de l’Université de Rennes 1, soutenue le 15 juin 2005.

    Google Scholar 

  15. Ledoux, J. (1993) Modèles Markoviens: sur la caractérisation de l’agrégation faible et sur les modèles structurels pour l’évaluation de la sûreté de fonctionnement du logiciel. PhD thesis, Université de Rennes I, Décembre 1993.

    Google Scholar 

  16. Bourhfir, C., Dssouli, R., Aboulhamid, E., Rico, N. (1997) Automatic executable test case generation for extended finite state machine protocols. In IFIP WG 6.1 International Workshop on Testing of Communicating Systems, pp. 75–90, Cheju Island, Korea.

    Google Scholar 

  17. Military Standard – 1629A (1980) Procedures for Performing a Failure Mode, Effects and Criticality Analysis. U.S. Department of Defence, Washington, DC.

    Google Scholar 

  18. Military Handbook – 338B (1998) Electronic Reliability Design Handbook, US Department of Defense, Washington, DC.

    Google Scholar 

  19. NSWC-07 (2007) Handbook of Reliability Prediction Procedures for Mechanical Equipment. Naval Surface Warfare Center, Washington, DC.

    Google Scholar 

  20. Noel, M.F. (2006) A dynamic multi-view product model to share product behaviours among designers: How process model adds semantic to the behavior paradigm. International Journal of Product Lifecycle Management, 1(4):380–390.

    Article  MathSciNet  Google Scholar 

  21. Coulibaly, A., Houssin, R., Mutel, B. (2008) Maintainability and safety indicators at design stage for mechanical products. Computers in Industry, 59(5):438–449, http://dx.doi.org/10.1016/j.compind.2007.12.006

  22. Rivoire, M., Ferrier, J.-L. (2001) Matlab, Simulink, Stateflow avec des exercices d’automatique résolus. Ed. Technip, Paris, ISBN 2-7108-0789-0.

    Google Scholar 

  23. Campbell, S.L., Chancelier, J.-P., Nikoukhah, R. (2000) Modeling and Simulation in Scilab/Scicos. Springer, Heidelberg, ISBN 10:0-387-27802-8.

    Google Scholar 

  24. Sumathi, S., Surekha, P. (2007) LabVIEW Based Advanced Instrumentation Systems. Ed. Springer, Heidelberg, ISBN 978-3-540-48500-1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Coulibaly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coulibaly, A., Ostrosi, E. (2011). A Framework for Assessing the Reliability of Mechatronic Systems. In: Bernard, A. (eds) Global Product Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15973-2_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15973-2_66

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15972-5

  • Online ISBN: 978-3-642-15973-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics