Skip to main content

Modelling Phosphorus Dynamics in the Soil–Plant System

  • Chapter
  • First Online:
Book cover Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

The large number of models for P dynamics in soil–plant systems focus on different scales and have different purposes. This chapter provides an overview of existing models and illustrates the scope and potential of current modelling techniques by using three case studies. We focus on plant traits that enhance plant phosphate uptake from soil. The first case study presents a model for phosphate uptake by mycorrhizal roots, the second study is based on a root system scale model that includes root plasticity, and the third presents a model for crop response to soil phosphate supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arheimer B, Andersson L, Larsson M, Lindström G, Olsson J, Pers BC (2004) Modelling diffuse nutrient flow in eutrophication control scenarios. Water Sci Technol 49:37–45

    CAS  PubMed  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York

    Google Scholar 

  • Bhadoria PS, Steingrobe B, Claassen N, Liebersbach H (2002) Phosphorus efficiency of wheat and sugar beet seedlings grown in soils with mainly calcium, or iron and aluminium phosphate. Plant Soil 246:41–52

    Article  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Chung SO, Kim HS, Kim JS (2003) Model development for nutrient loading from paddy rice fields. Agric Water Manage 62:1–17

    Article  Google Scholar 

  • Claassen N, De Willigen P, Diederik J, Doussan C, Dunbabin V, Heinen M, Hopmans JW, Kirk G, Kuzyakov Y, Mayer U, Mollier A, Nietfeld H, Nowack B, Oswald S, Roose T, Schnepf A, Schulin R, Seuntjens P, Silk WK, Steingrobe B, van Beinum W, Van Bodegom P (2006) Rhizosphere models. In: Luster J et al (eds) Handbook of methods used in rhizosphere research, part II. Swiss Federal Research Institute WSL, Birmensdorf, pp 487–517

    Google Scholar 

  • Dalzell BJ, Gowda PH, Mulla DJ (2004) Modeling sediment and phosphorus losses in an agricultural watershed to meet TMDLs. J Am Water Resour Assoc 40:533–543

    Article  Google Scholar 

  • Darrah PR, Jones DL, Kirk GJD, Roose T (2006) Modelling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. Eur J Soil Sci 57:13–25

    Article  Google Scholar 

  • Daus AD, Frind EO, Sudicky EA (1985) Comparative error analysis in finite-element formulations of the advection-dispersion equation. Adv Water Resour 8:86–95

    Article  Google Scholar 

  • De Willigen P, Van Noordwijk M (1994) Mass flow and diffusion of nutrients to a root with constant or zero-sink uptake. II. Zero-sink uptake. Soil Sci 157:171–175

    Article  Google Scholar 

  • De Willigen P, Heinen M, Mollier A, Van Noordwijk M (2002) Two-dimensional growth of a root system modelled as a diffusion process. I. Analytical solutions. Plant Soil 240:225–234

    Article  Google Scholar 

  • Diggle AJ (1988) Rootmap – a model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant Soil 105:169–178

    Article  Google Scholar 

  • Djodjic F, Montas H, Shirmohammadi A, Bergström L, Ulén B (2002) A decision support system for phosphorus management at a watershed scale. J Environ Qual 31:937–945

    Article  CAS  PubMed  Google Scholar 

  • Dunbabin VM, Armstrong RD, Officer SJ, Norton RM (2009) Identifying fertiliser management strategies to maximise nitrogen and phosphorus acquisition by wheat in two contrasting soils from Victoria, Australia. Aust J Soil Res 47:74–90

    Article  CAS  Google Scholar 

  • Einstein A (1934) On the method of theoretical physics. Philos Sci 1:163–169

    Article  Google Scholar 

  • Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377

    Article  Google Scholar 

  • Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29:15–23

    Article  CAS  Google Scholar 

  • Ge ZY, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171

    Article  CAS  PubMed  Google Scholar 

  • Giasson E, Bryant RB, Bills NL (2002) Environmental and economic optimization of dairy manure management: a mathematical programming approach. Agron J 94:757–766

    Article  Google Scholar 

  • Gillespie AR, Pope PE (1990) Rhizosphere acidification increases phosphorus recovery of black locust. II. Model predictions and measured recovery. Soil Sci Soc Am J 54:538–541

    Article  CAS  Google Scholar 

  • Grant RF, Robertson JA (1997) Phosphorus uptake by root systems: mathematical modelling in ecosys. Plant Soil 188:279–297

    Article  CAS  Google Scholar 

  • Grant RF, Amrani M, Heaney DJ, Wright R, Zhang M (2004) Mathematical modeling of phosphorus losses from land application of hog and cattle manure. J Environ Qual 33:210–231

    Article  CAS  PubMed  Google Scholar 

  • Harrison JA, Seitzinger SP, Bouwman AF, Caraco NF, Beusen AHW, Vörösmarty CJ (2005) Dissolved inorganic phosphorus export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles 19:1–15

    Google Scholar 

  • Hoffmann C, Ladewig E, Claassen N, Jungk A (1994) Phosphorus uptake of maize as affected by ammonium and nitrate nitrogen – Measurements and model calculations. Journal of Plant Nutrition and Soil Science 157:225–232

    Google Scholar 

  • Huguenin-Elie O, Kirk GJD, Frossard E (2009) The effects of water regime on phosphorus responses of rainfed lowland rice cultivars. Ann Bot 103:211–220

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Janssen PHM, Heuberger PSC (1995) Calibration of process-oriented models. Ecol Modell 83:55–66

    Article  Google Scholar 

  • Kirk GJD (1999) A model of phosphate solubilization by organic anion excretion from plant roots. Eur J Soil Sci 50:369–378

    Article  CAS  Google Scholar 

  • Kirschbaum MUF, Medlyn BE, King DA, Pongracic S, Murty D, Keith H, Khanna PK, Snowdon P, Raison RJ (1998) Modelling forest-growth response to increasing CO2 concentration in relation to various factors affecting nutrient supply. Glob Change Biol 4:23–41

    Article  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  Google Scholar 

  • Landis FC, Fraser LH (2008) A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol 177:466–479

    CAS  PubMed  Google Scholar 

  • Leitner D, Klepsch S, Bodner G, Schnepf A (2010a) A dynamic root system growth model based on L-systems. Tropisms and coupling to nutrient uptake from soil. Plant Soil 332:177–192

    Article  CAS  Google Scholar 

  • Leitner D, Klepsch S, Ptashnyk M, Marchant A, Kirk GJD, Schnepf A, Roose T (2010b) A dynamic model of nutrient uptake by root hairs. New Phytol 185:792–802

    Article  CAS  PubMed  Google Scholar 

  • Li X-L, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Article  Google Scholar 

  • Luster J, Göttlein A, Nowack B, Sarret G (2009) Sampling, defining, characterising and modeling the rhizosphere – the soil science tool box. Plant Soil 321:457–482

    Article  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • McGechan MB, Lewis DR (2002) Sorption of phosphorus by soil, part 1: principles, equations and models. Biosystems Eng 82:1–24

    Article  Google Scholar 

  • Migliaccio KW, Chaubey I, Haggard BE (2007) Evaluation of landscape and instream modeling to predict watershed nutrient yields. Environ Modell Softw 22:987–999

    Article  Google Scholar 

  • Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot 50:487–497

    Article  CAS  Google Scholar 

  • Mollier A, De Willigen P, Heinen M, Morel C, Schneider A, Pellerin S (2008) A two-dimensional simulation model of phosphorus uptake including crop growth and P-response. Ecol Modell 210:453–464

    Article  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc London B 281:277–294

    Article  Google Scholar 

  • Morton KW, Mayers DF (1994) Numerical solution of partial differential equations. Cambridge University Press, Cambridge

    Google Scholar 

  • Overman AR, Scholtz RV (1999) Langmuir-Hinshelwood model of soil phosphorus kinetics. Commun Soil Sci Plant Anal 30:109–119

    Article  CAS  Google Scholar 

  • Pages L, Vercambre G, Drouet JL, Lecompte F, Collet C, Le Bot J (2004) RootTyp: a generic model to depict and analyse the root system architecture. Plant Soil 258:103–119

    Article  CAS  Google Scholar 

  • Porder S, Vitousek PM, Chadwick OA, Chamberlain CP, Hilley GE (2007) Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10:158–170

    Article  CAS  Google Scholar 

  • Ptashnyk M, Roose T, Kirk GJD (2010) Diffusion of strongly sorbed solutes in soil: a dual-porosity model allowing for slow access to sorption sites and time-dependent sorption reactions. Eur J Soil Sci 61:108–119

    Article  Google Scholar 

  • Radcliffe DE, Lin Z, Risse LM, Romeis JJ, Jackson CR (2009) Modeling phosphorus in the Lake Allatoona watershed using SWAT. I. Developing phosphorus parameter values. J Environ Qual 38:111–120

    Article  CAS  PubMed  Google Scholar 

  • Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274:37–49

    Article  CAS  Google Scholar 

  • Reginato JC, Palumbo MC, Moreno IS, Bernardo IC, Tarzia DA (2000) Modeling nutrient uptake using a moving boundary approach: comparison with the Barber-Cushman model. Soil Sci Soc Am J 64:1363–1367

    Article  CAS  Google Scholar 

  • Roose T, Fowler AC (2004) A mathematical model for water and nutrient uptake by plant root systems. J Theor Biol 228:173–184

    Article  CAS  PubMed  Google Scholar 

  • Roose T, Schnepf A (2008) Mathematical models of plant-soil interaction. Philos Trans R Soc London A 366:4597–4611

    Article  Google Scholar 

  • Roose T, Fowler AC, Darrah PR (2001) A mathematical model of plant nutrient uptake. J Math Biol 42:347–360

    Article  CAS  PubMed  Google Scholar 

  • Saltelli A, Chan K, Scott EM (eds) (2000) Sensitivity analysis. Wiley series on probability and statistics. Wiley, Chichester

    Google Scholar 

  • Schils RLM, De Haan MHA, Hemmer JGA, Van Den Pol-van DA, De Boer JA, Evers AG, Holshof G, Van Middelkoop JC, Zom RLG (2007) DairyWise, a whole-farm dairy model. J Dairy Sci 90:5334–5346

    Article  CAS  PubMed  Google Scholar 

  • Schlecht E, Hiernaux P (2005) Beyond adding up inputs and outputs: process assessment and upscaling in modelling nutrient flows. Nutr Cycl Agroecosyst 70:303–319

    Article  Google Scholar 

  • Schnepf A, Klepsch S (2010) Mathematics and rhizotechnology. Mathematical methods for upscaling of rhizosphere control mechanisms. BOKU – University of Natural Resources and Applied Life Sciences, Vienna. http://www.boku.ac.at/marhizo/. Accessed 23 July 2010

  • Schnepf A, Roose T (2006) Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytol 171:669–682

    CAS  PubMed  Google Scholar 

  • Schnepf A, Roose T, Schweiger P (2008a) Growth model for arbuscular mycorrhizal fungi. J R Soc Interface 5:773–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnepf A, Roose T, Schweiger P (2008b) Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake – a modelling study. Plant Soil 312:85–99

    Article  CAS  Google Scholar 

  • Schoumans OF, Groenendijk P (2000) Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands. J Environ Qual 29:111–116

    Article  CAS  Google Scholar 

  • Shi Z, Erickson LE (2001) Mathematical model development and simulation of in situ stabilization in lead-contaminated soils. J Hazard Mater 87:99–116

    Article  CAS  PubMed  Google Scholar 

  • Smethurst PJ, Comerford NB (1993) Potassium and phosphorus uptake by competing pine and grass: observations and model verification. Soil Sci Soc Am J 57:1602–1610

    Article  Google Scholar 

  • Smith J, Smith P (2007) Introduction to environmental modelling. Oxford University Press, New York

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 130:16–20

    Article  Google Scholar 

  • Teklić T, Vukadinović V, Lončarić Z, Rengel Z, Dropulić D (2002) Model for optimizing fertilization of sugar beet, wheat, and maize grown on pseudogley soils. J Plant Nutr 25:1863–1879

    Article  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New York

    Google Scholar 

  • Torbert HA, Gerik TJ, Harman WL, Williams JR, Magre M (2008) EPIC evaluation of the impact of poultry litter application timing on nutrient losses. Commun Soil Sci Plant Anal 39:3002–3031

    Article  CAS  Google Scholar 

  • Van Der Zee SEATM, Van Riemsdijk WH (1991) Model for the reaction kinetics of phosphate with oxides and soil. In: Bolt GH et al (eds) Interactions at the soil colloid–soil solution interface. Kluwer Academic, Dordrecht, pp 205–239

    Chapter  Google Scholar 

  • Wang YP, Houlton BZ, Field CB (2007) A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochem Cycles 21:1–15

    Article  Google Scholar 

  • Wissuwa M, Gamat G, Ismail AM (2005) Is root growth under phosphorus deficiency affected by source or sink limitations? J Exp Bot 56:1943–1950

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Schnepf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Schnepf, A., Leitner, D., Klepsch, S., Pellerin, S., Mollier, A. (2011). Modelling Phosphorus Dynamics in the Soil–Plant System. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_5

Download citation

Publish with us

Policies and ethics