Skip to main content

Abstract

Computational Steering, the combination of a simulation back-end with a visualisation front-end, offers great possibilities to exploit and optimise scenarios in engineering applications. Due to its interactivity, it requires fast grid generation, simulation, and visualisation and, therefore, mostly has to rely on coarse and inaccurate simulations typically performed on rather small interactive computing facilities and not on much more powerful high-performance computing architectures operated in batch-mode. This paper presents a steering environment that intends to bring these two worlds – the interactive and the classical HPC world – together in an integrated way. The environment consists of efficient fluid dynamics simulation codes and a steering and visualisation framework providing a user interface, communication methods for distributed steering, and parallel visualisation tools. The gap between steering and HPC is bridged by a hierarchical approach that performs fast interactive simulations for many scenario variants increasing the accuracy via hierarchical refinements in dependence of the time the user wants to wait. Finally, the user can trigger large simulations for selected setups on an HPC architecture exploiting the pre-computations already done on the interactive system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASHRAE: Standard 55: Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta (2004)

    Google Scholar 

  2. Atanasov, A.: Design and implementation of a computational steering framework for CFD simulations. Diploma Thesis, Institut für Informatik, Technische Universität München (2009)

    Google Scholar 

  3. Brenk, M., Bungartz, H.J., Mehl, M., Muntean, I.L., Neckel, T., Weinzierl, T.: Numerical simulation of particle transport in a drift ratchet. SIAM Journal of Scientific Computing 30(6), 2777–2798 (2008). URL http://dx.doi.org/10.1137/070692212

    Article  MATH  MathSciNet  Google Scholar 

  4. Bungartz, H.J., Mehl, M., Neckel, T., Weinzierl, T.: The pde framewirk peano applied to computational fluid dynamics. Computational Mechanics (2009). Accepted

    Google Scholar 

  5. Fiala, D.: Dynamic simulation of human heat transfer and thermal comfort. Band 41, De Monfort University Leicester, HFT Stuttgart (1998)

    Google Scholar 

  6. Gagge, A.: Rational temp. indices of man’s thermal env. and their use with a 2-node model of his temp. reg. Fed. Proc. 32, 1572–1582 (1973)

    Google Scholar 

  7. Laboratories, S.N.: Vtk – visualization toolkit. URL www.vtk.org

  8. Mundani, R.P., Düster, A., Knežević, J., Niggl, A., Rank, E.: Dynamic load balancing strategies for hierarchical p-FEM solvers. In: 16th EuroPVM/MPI Conf., pp. 305–312 (2009)

    Google Scholar 

  9. Neckel, T.: The PDE Framework Peano: An Environment for Efficient Flow Simulations. Verlag Dr. Hut (2009)

    Google Scholar 

  10. Schroeder, W., Nartin, K., Lorenson, B.: Visualisation Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware (2006)

    Google Scholar 

  11. Stolwijk, J.: A mathematical model of physiological temperature regulation in man. Contractor report NASA CR-1855, National Aeronautics and Space Administration, Washington D.C. (1971)

    Google Scholar 

  12. Szabó, B., Düster, A., Rank, E.: Encyclopedia of Computational Mechanics, chap. The p-version of the Finite Element Method, pp. 119–139. John Wiley & Sons (2004)

    Google Scholar 

  13. van Treeck, C., Frisch, J., Egger, M., Rank, E.: Model-adaptive analysis of indoor thermal comfort. In: Building Simulation 2009. Glasgow, Scotland (2009)

    Google Scholar 

  14. van Treeck, C., Frisch, J., Pfaffinger, M., Rank, E., Paulke, S., Schweinfurth, I., Schwab, R., Hellwig, R., Holm, A.: Integrated thermal comfort analysis using a parametric manikin model for interactive real-time simulation. J Building Performance Simulation in press (2009)

    Google Scholar 

  15. van Treeck, C., Wenisch, P., Borrmann, A., Pfaffinger, M., Wenisch, O., Rank, E.: ComfSim - Interaktive Simulation des thermischen Komforts in Innenräumen auf Höchstleistungsrechnern. Bauphysik 29(1), 2–7 (2007). DOI: 10.1002/bapi.200710000

    Article  Google Scholar 

  16. Weinzierl, T.: A Framework for Parallel PDE Solvers on Multiscale Adaptive Cartesian Grids. Verlag Dr. Hut (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Atanasov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atanasov, A. et al. (2010). Computational Steering of Complex Flow Simulations. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_6

Download citation

Publish with us

Policies and ethics