Skip to main content

Statistically Converged Properties of Water from Ab Initio Molecular Dynamics Simulations

  • Conference paper
High Performance Computing in Science and Engineering, Garching/Munich 2009

Abstract

We present results from an ab initio molecular dynamics study of pure water. Using the resources available at the HLRB2 we were able to produce the first trajectories of sufficient length and number, that allow to study dynamical processes on the picosecond timescale with statistically reliable results. Additionally we computed a statistically converged infrared absorption spectrum from 0–4000 cm−1, which is in good agreement with the experimental observation. In particular, at THz frequencies the spectra qualitatively reproduce important features, whereas, in contrast, force field based simulations have been shown to utterly fail. In order to compensate for the neglect of quantum effects for the nuclei in classical dynamics simulations on an ab initio potential energy surface and potential overbinding in conjunction with the used electron structure method, we applied an increased intrinsic temperature of 400K in order to obtain structural and dynamical properties corresponding to an experimental temperature of 300K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball P (2008) Water as an Active Constituent in Cell Biology. Chem Rev 108:74–108

    Article  Google Scholar 

  2. Bagchi B (2005) Water Dynamics in the Hydration Layer around Proteins and Micelles. Chem Rev 105:3197–3219

    Article  Google Scholar 

  3. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  4. Bertie JE, Lan Z (1996) Infrared Intensities of Liquids XX: The Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25°C between 15,000 and 1 cm−1. Appl Spec 50:1047–1057

    Article  Google Scholar 

  5. Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Havenith M (2007) An extended dynamical hydration shell around proteins. Proc Natl Acad Sci 104:20749–20752

    Article  Google Scholar 

  6. Ebbinghaus S, Kim SJ, Heyden M, Yu X, Gruebele M, Leitner DM, Havenith M (2008) Protein Sequence- and pH-Dependent Hydration Probed by Terahertz Spectroscopy. J Am Chem Soc 130:2374–2375

    Article  Google Scholar 

  7. Fanourgakis GS, Xantheas SS (2008) Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. J Chem Phys 128:074506

    Article  Google Scholar 

  8. Fernández-Serra MV, Artacho E (2004) Network equilibration and first-principles liquid water. J Cehm Phys 121:11136–11144

    Article  Google Scholar 

  9. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54:1703–1710

    Article  Google Scholar 

  10. Grossman JC, Schwegler E, Draeger EW, Gygi F, Galli G (2004) Towards an assessment of the accuracy of density functional theory for first principles simulations of water. J Chem Phys 120:300–311

    Article  Google Scholar 

  11. Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 58:3641–3662

    Article  Google Scholar 

  12. Hertz HG (1973) Nuclear magnetic relaxation spectroscopy. In Water: A Comprehensive Treatise, Vol. 3. F. Franks, editor. Plenum Press, New York 301–395.

    Google Scholar 

  13. Heugen U, Schwaab G, Bründermann E, Heyden M, Yu X, Leitner DM, Havenith M (2006) Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proc Natl Acad Sci 103:12301–12306

    Article  Google Scholar 

  14. Heyden M, Niehues G, Heugen U, Leitner DM, Havenith M (2008) The long range influence of carbohydrates on the solvation dynamics of water - answers from THz spectroscopic measurements and molecular modelling simulations. J Am Chem Soc 130:5773–5779

    Article  Google Scholar 

  15. Kohn W, Sham LJ (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 140:A1133–A1138

    Article  MathSciNet  Google Scholar 

  16. Kim SJ, Born B, Havenith M, Gruebele M (2008) Real-Time Detection of Protein-Water Dynamics upon Protein Folding by Terahertz Absorption Spectroscopy. Angew Chem Int Ed 47:6486–6489

    Article  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  18. Marx D, Hutter J (2009) Ab initio Molecular Dynamics - Basic Theory and Advanced Methods. Cambridge University Press

    Google Scholar 

  19. Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56:12847–12865

    Article  Google Scholar 

  20. Pal SK, Peon J, Bagchi B, Zewail AH (2002) Biological Water: Femtosecond Dynamics of Macromolecular Hydration. J Phys Chem B 106:12376–12395

    Article  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M, (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 108:74–108

    Google Scholar 

  22. Rahman A, Stillinger FH (1974) Propagation of sound in water. A molecular-dynamics study. Phys Rev A 10:368–378

    Article  Google Scholar 

  23. Ramírez R, López-Ciudad T, Kumar P, Marx D (2004) Quantum corrections to classical time-correlation functions: Hydrogen bonding and anharmonic floppy modes. J Chem Phys 121:3973–3983

    Article  Google Scholar 

  24. Schwegler E, Grossman JC, Gygi F, Galli G (2004) Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II. J Chem Phys 121:5400–5409

    Article  Google Scholar 

  25. Sharma M, Resta R, Car R (2005) Intermolecular Dynamical Charge Fluctuations in Water: A Signature of the H-Bond Network. Phys Rev Lett 95:187401

    Article  Google Scholar 

  26. Silvestrelli PL, Bernasconi M, Parrinello M (1997) Ab initio infrared spectrum of liquid water. Chem Phys Lett 277:478–482

    Article  Google Scholar 

  27. Soper AK (2000) The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem Phys 258:121–137

    Article  Google Scholar 

  28. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167:103–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Heyden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heyden, M., Havenith, M. (2010). Statistically Converged Properties of Water from Ab Initio Molecular Dynamics Simulations. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_57

Download citation

Publish with us

Policies and ethics