Skip to main content

Abstract

We study small-polaron motion through guanine-based materials. The temperature dependence and anisotropy of charge carrier (hole) transport in crystalline guanine is investigated by employing the Kubo formalism and calculating the hole mobilities with ab initio DFT material parameters. We discuss our findings in relation to transport pathways in DNA-based structures like guanine quadruplexes and ribbons which are considered to play a major role in DNA-based nanoelectronics. The mobility results are interpreted by help of a novel visualization method for transport channels which we derive from overlapping wavefunctions. An analysis of coherent and incoherent contributions to the mobility shows that even in materials with high purity and long-range order like crystals only incoherent phonon-assisted hopping occurs at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandre, S.S., Artacho, E., Soler, J.M., Chacham, H.: Small Polarons in Dry DNA. Phys. Rev. Lett. 91, 108105 (2003)

    Article  Google Scholar 

  2. Beleznay, F.B., Bogár, F., Ladik, J.: Charge carrier mobility in quasi-one-dimensional systems: Application to a guanine stack. J. Chem. Phys. 119, 5690 (2003)

    Article  Google Scholar 

  3. Bogár, F., Ladik, J.: Correlation corrected energy bands of nucleotide base stacks. Chem. Phys. 237, 273 (1998)

    Article  Google Scholar 

  4. Bongiorno, A.: Energy landscape of an electron hole in hydrated dna. J. Phys. Chem. B 112, 13,945 (2008)

    Article  Google Scholar 

  5. Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, G.: DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775 (1998)

    Article  Google Scholar 

  6. Brédas, J.L., Calbert, J.P., da Silva Filho, D.A., Cornil, J.: Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. USA 99, 5804 (2002)

    Article  Google Scholar 

  7. Cohen, H., Nogues, C., Naaman, R., Porath, D.: Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc. Nat. Acad. Sci. 102, 11,589 (2005)

    Google Scholar 

  8. Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., Brédas, J.L.: Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007)

    Article  Google Scholar 

  9. Di Felice, R., Calzolari, A., Garbesi, A., Alexandre, S.S., Soler, J.M.: Strain-dependence of electronic properties in periodic quadrupel helical g4-wires. J. Phys. Chem. B 109, 22,301 (2005)

    Google Scholar 

  10. Di Felice, R., Calzolari, A., Molinari, E., Garbesi, A.: Ab initio study of model guanine assemblies: The role of π-π coupling and band transport. Phys. Rev. B 65, 045104 (2001)

    Article  Google Scholar 

  11. Eley, D.D., Spivey, D.I.: Semiconductivity of organic substances. Trans. Faraday Soc. 58, 411 (1962)

    Article  Google Scholar 

  12. Endres, R.G., Cox, D.L., Singh, R.R.P.: Colloquium: The quest for high-conductance DNA. Rev. Mod. Phys. 76, 195 (2004)

    Article  Google Scholar 

  13. Grozema, F.C., Berlin, Y.A., Siebbeles, L.D.A.: Mechanism of charge migration through dna: Molecular wire behavior, single-step tunneling or hopping? J. Am. Chem. Soc. 122, 10,903 (2000)

    Article  Google Scholar 

  14. Grozema, F.C., Tonzani, S., Berlin, Y.A., Schatz, G.C., Siebbeles, L.D.A., Ratner, M.: Effect of structural dynamics on charge transfer in dna hairpins. J. Am. Chem. Soc. 130, 5157 (2008)

    Article  Google Scholar 

  15. Hannewald, K., Bobbert, P.A.: Ab initio theory of charge-carrier transport in ultrapure organic crystals. Appl. Phys. Lett. 85, 1535 (2004)

    Article  Google Scholar 

  16. Hannewald, K., Bobbert, P.A.: Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals. Phys. Rev. B 69, 075212 (2004)

    Article  Google Scholar 

  17. Hannewald, K., Stojanović, V.M., Schellekens, J.M.T., Bobbert, P.A., Kresse, G., Hafner, J.: Theory of polaron band width narrowing in organic molecular crystals. Phys. Rev. B 69, 075211 (2004)

    Article  Google Scholar 

  18. Hatcher, E., Balaeff, A., Keinan, S., Venkatramani, R., Beratan, D.N.: PNA versus DNA: Effects of Structural Fluctuations on Electronic Structure and Hole-Transport Mechanisms. J. Am. Chem. Soc. 130, 11,752 (2008)

    Article  Google Scholar 

  19. Henderson, P.T., Jones, D., Hampikian, G., Kan, Y., Schuster, G.B.: Long-distance charge transport in duplex dna: The phonon-assisted polaron-like hopping mechanism. Proc. Natl. Acad. Sci. USA 96, 8353 (1999)

    Article  Google Scholar 

  20. Holstein, T.: Studies of Polaron Motion, Part I. Ann. Phys. 8, 325 (1959)

    Article  Google Scholar 

  21. Kim, E.G., Coropceanu, V., Gruhn, N.E., Sánchez-Carrera, R.S., Snoeberger, R., Matzger, A.J., Brédas, J.L.: Charge transport parameters of the pentathienoacene crystal. J. Am. Chem. Soc. 129, 13,072 (2007)

    Google Scholar 

  22. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  23. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1998)

    Article  Google Scholar 

  24. Lewis, F.D., Wu, T., Zhang, Y., Letsinger, R.L., Greenfield, S.R., Wasielewski, M.R.: Distance-Dependent Electron Transfer in DNA Hairpins. Science 277, 673 (1997)

    Article  Google Scholar 

  25. Liu, T., Barton, J.K.: DNA Electrochemistry through the Base Pairs Not the Sugar-Phosphate Backbone. J. Am. Chem. Soc. 127, 10,160 (2005)

    Google Scholar 

  26. Mahan, G.D.: Many-Particle Physics. Kluwer Academic Publishers, New York (2000)

    Google Scholar 

  27. Maruccio, G., Visconti, P., Arima, V., D’Amico, S., Biasco, A., D’Amone, E., Cingolani, R., Rinaldi, R., Masiero, S., Giorgi, T., Gottarelli, G.: Field Effect Transistor Based on a Modified DNA Base. Nano Lett. 3, 479 (2003)

    Article  Google Scholar 

  28. Matthes, L., Ortmann, F., Oetzel, B., Bechstedt, F., Hannewald, K.: (unpublished)

    Google Scholar 

  29. Ortmann, F., Bechstedt, F., Hannewald, K.: Theory of charge transport in organic crystals: Beyond holstein’s small-polaron model. Phys. Rev. B 79, 235206 (2009). DOI 10.1103/PhysRevB.79.235206

    Article  Google Scholar 

  30. Ortmann, F., Hannewald, K., Bechstedt, F.: Ab initio description and visualization of charge transport in durene crystals. Appl. Phys. Lett. 93, 222105 (2008). DOI 10.1063/1.3033830

    Article  Google Scholar 

  31. Ortmann, F., Hannewald, K., Bechstedt, F.: Guanine crystals: A first principles study. J. Phys. Chem. B 112, 1540 (2008). DOI 10.1021/jp076455t

    Article  Google Scholar 

  32. Ortmann, F., Hannewald, K., Bechstedt, F.: Charge Transport in Guanine-Based Materials. J. Phys. Chem. B 113, 7367 (2009). DOI 10.1021/jp901029t

    Article  Google Scholar 

  33. Ortmann, F., Preuss, M., Oetzel, B., Hannewald, K., Bechstedt, F.: Charge Transport through Guanine Crystals, p. 687. Springer-Verlag (2009)

    Google Scholar 

  34. de Pablo, P.J., Moreno-Herrero, F., Colchero, J., Gómez Herrero, J., Herrero, P., Baró, A.M., Ordejón, P., Soler, J.M., Artacho, E.: Absence of dc-Conductivity in λ-DNA. Phys. Rev. Lett. 85, 4992

    Google Scholar 

  35. Perdew, J.P.: p. 11. Akademie-Verlag, Berlin (1991)

    Google Scholar 

  36. Porath, D., Bezryadin, A., de Vries, S., Dekker, C.: Direct measurement of electrical transport through DNA molecules. Nature 403, 635 (2000)

    Article  Google Scholar 

  37. Tran, P., Alavi, B., Gruner, G.: Charge Transport along the l-DNA Double Helix. Phys. Rev. Lett. 85, 1564 (2000)

    Article  Google Scholar 

  38. Yoo, K.H., Ha, D.H., Lee, J.O., Park, J.W., Kim, J., Kim, J.J., Lee, H.Y., Kawai, T., Choi, H.Y.: Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules. Phys. Rev. Lett. 87, 198102 (2001)

    Article  Google Scholar 

  39. Young, M.A., Ravishanker, G., Beveridge, D.L.: A 5-Nanosecond Molecular Dynamics Trajectory for B-DNA: Analysis of Structure, Motions, and Solvation. Biophys. J. 73, 2312 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ortmann, F., Matthes, L., Oetzel, B., Bechstedt, F., Hannewald, K. (2010). Charge-Carrier Transport Through Guanine Crystals and Stacks. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_44

Download citation

Publish with us

Policies and ethics