Skip to main content

Lakes Studies from Satellite Altimetry

  • Chapter
  • First Online:
Coastal Altimetry

Abstract

Accurate and continuous monitoring of lakes and inland seas has been possible since 1993 thanks to the success of satellite altimetry missions: TOPEX/POSEIDON (T/P), GFO, JASON-1, and ENVISAT. Global processing of the data of these satellites can provide time series of lake surface heights over the entire Earth at different temporal and spatial scales with a subdecimeter precision. Large lakes affect climate on a regional scale through albedo and evaporation. In some regions, highly ephemeral lakes provide information on extreme events such as severe droughts or floods. On the other hand, endorheic basin lakes are sensitive to changes in regional water balance. In a given region covered by a group of lakes, if the records of their level variations are long enough, they could reveal the recurrence of trends in a very reliable and accurate manner. Lakes are thought to have enough inertia to be considered as an excellent proxy for climate change. Moreover, during the last century, thousands of dams have been constructed along the big rivers worldwide, leading to the appearance of large reservoirs. This has several impacts on the basins affected by those constructions, as well as effects on global sea level rise. The response of water levels to regional hydrology is particularly marked for lakes and inland seas of semiarid regions. Altimetry data can provide a valuable source of information in hydrology sciences, but in-situ data (river runoff, water level, temperature, or precipitation) are still strongly needed to study the evolution of the water mass balance of each lake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A2 and B2 are two different scenarios, though not extremes, of what Earth might be like by the endof the twenty-first century. B2 scenario emphasizes environmental preservation and social equity while A2 scenario anticipates higher CO2 concentrations, larger human population, greater energy consumption, more changes in land use and scarcer resources, and less diverse applications of technology

  2. 2.

    The location of the inter-tropical convergence zone (ITCZ) varies over time. Over land, it movesback and forth across the equator following the sun’s zenith point. Over the oceans, where the convergence zone is better defined, the seasonal cycle is more subtle, as the convection is constrained by the distribution of ocean temperatures

  3. 3.

    I.V. Rubanov is a Russian scientist who did core drilling of the Aral Sea bottom in the 1980s in order to study the past regressions and transgressions of the Aral Sea. He provided a map of salt deposits in his different core, some of them including Mirabilite.

Abbreviations

AO:

Antarctic Oscillation

AVISO:

Archiving, Validation and Interpretation of Satellite Oceanographic data

CNES:

Centre National d’Études Spatiales

CTOH:

Centre de Topographie des Océans et de l’Hydrosphère

ECMWF:

European Centre for Medium-Range Weather Forecasts

ENSO:

El Niño/Southern Oscillation

ESA:

European Space Agency

GCM:

Global Climate Model

GDR:

Geophysical Data Record

GFO:

Geosat Follow-On

IOD:

Indian Ocean dipole

IPCC:

Intergovernmental Panel on Climate Change

ITCZ:

InTertropical Convergence Zone

NAO:

Northern Atlantic Oscillation

NASA:

National Aeronautics and Space Administration

NATO:

North Atlantic Treaty Organization

NCEP:

National Center for Environmental Prediction

PDO:

Pacific Decadal Oscillation

PODAAC:

Physical Oceanography Distributed Active Archive Center

RMS:

Root Mean Square

SO:

Southern Oscillation

SST:

Sea Surface Temperature

T/P:

TOPEX/Poseidon

UNESCO:

United Nations Educational, Scientific and Cultural Organization

USDA:

US Department of Agriculture

References

  • Aladin NV, Crétaux JF, Plotnikov IS et al (2005) Modern hydro-biological state of the Small Aral Sea. Environmetric 16:1–18. doi:10.1002/env.709

    Article  Google Scholar 

  • Auqué LF (1995) Greoquimica de las lagunas. Estud Geol 51:243–257, in Spanish

    Google Scholar 

  • Beltrando G, Cadet P (1990) Variabilité interannuelle de la petite saison des pluies en Afrique Orientale: relations avec la circulation atmosphérique générale. Veille Climatique Satellitaire 33:19–36

    Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S et al (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, 210 pp

    Google Scholar 

  • Becker M, Llowel W, Cazenave A, Güntner A, Crétaux JF (2010) Recent hydrological behaviour of the East African Great Lakes region inferred from GRACE, satellite altimetry and rainfall observations. C R Geosci. doi:10.1016/j.crte.2009.12.010

    Google Scholar 

  • Bergonzini L, Richard L, Petit P (2004) Camberlin, Zonal circulations over the Indian and Pacific Oceans and the level of Lakes Victoria and Tanganyika. Int J Climatol 24(13):1613–1624

    Article  Google Scholar 

  • Birkett S (1995) Contribution of TOPEX/Poseidon to the global monitoring of climatically sensitive lakes. J Geophys Res 100(C12):25, 179–125, 204

    Google Scholar 

  • Birkett CM (2000) Synergistic remote sensing of lake Chad: variability of basin inundation. Remote Sens Environ 72:218–236

    Google Scholar 

  • Calmant S, Seyler F (2006) Continental waters surface from satellite altimetry. C R Geosci. doi:10.1016/J.crte.2006.05.012

    Google Scholar 

  • Cazenave A, Bonnefond P, Dominh K (1997) Caspian sea level from T/P altimetry: level now falling. Geophys Res Lett 24:881–884

    Article  Google Scholar 

  • Coe MT, Birkett CM (2005) Water Resources in the Lake Chad Basin: Prediction of river discharge and lake height from satellite radar altimetry. Water Resour Res V40(10). doi:10.1029/2003WR002543

    Google Scholar 

  • Cohen AS, Lezzar KE, Cole J et al (2006) Late Holocene linkages between decade–century scale climate variability and productivity at Lake Tanganyika. Africa J Paleolimnol 36:189–209

    Article  Google Scholar 

  • Coudrain A, Francou B, Kundzewicz ZW (2005) Glacier shrinkage in the Andes and consequences for water resources. Hydrol Sci J 50(6):925–932

    Article  Google Scholar 

  • Crétaux JF, Birkett C (2006) Lake studies from satellite altimetry. C R Geosci. doi:10.1016/J.crte.2006.08.002

    Google Scholar 

  • Crétaux JF, Kouraev AV, Papa F et al (2005) Water balance of the Big Aral sea from satellite remote sensing and in situ observations. J Great Lakes Res 31(4):520–534

    Article  Google Scholar 

  • Crétaux JF, Calmant S, Romanovski VV et al (2009a) Implementation of a new absolute calibration site for radar altimeter in the continental area: Lake Issykkul in Central Asia. J Geodesy. doi:10.1007/s00190-008-0289-7

    Google Scholar 

  • Crétaux JF, Letolle R, Calmant S (2009b) Investigations on Aral Sea regressions from Mirabilite deposits and remote sensing. Aquatic Geochem. doi:10.1007/s10498-008-9051-2

    Google Scholar 

  • Depetris PJ, Pasquini AI (2000) The hydrological signal of the Perito Moreno Glacier damming of Lake Argentino (Southern Andean Patagonia): the connection to climate anomalies. Global Planet Change 26(4):367–374

    Article  Google Scholar 

  • De Wit M, Stankiewicz J (2006) Changes in surface water supply across Africa with predicted climate change. Science 311(5769):1917–1921

    Article  Google Scholar 

  • Fagel N, Boes X, Loutre MF (2008) Climate oscillations evidenced by spectral analysis of Southern Chilean lacustrine sediments: the assessment of ENSO over the last 600 years. J Paleolimnol 39:253–266

    Article  Google Scholar 

  • Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO Teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J Clim 19:979–997

    Article  Google Scholar 

  • Frappart F, Calmant S, Cauhopé M et al (2006) Preliminary results of Envisat RA-2-derived water levels validation over the Amazon basin. Remote Sens Environ 100:252–264

    Article  Google Scholar 

  • Garcin Y, Williamson D, Bergonzini L et al (2007) Solar and anthropogenic imprints on Lake Masoko (southern Tanzania) during the last 500 years. J Paleolimnol 37:475–490

    Article  Google Scholar 

  • Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14:2779–2789

    Article  Google Scholar 

  • Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Clim 12:2113–2123

    Article  Google Scholar 

  • Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the southern annular mode. Geophys Res Lett 33:L23704. doi:10.1029/2006GL027721

    Article  Google Scholar 

  • Guzkowska M, Rapley CG, Rideley JK et al (1990) Developments in inland water and land altimetry. ESA contract report 78391881FIFL

    Google Scholar 

  • Laxon S (1994) Sea ice altimeter processing scheme at the EODC. Int J Remote Sens 15(4):915–924

    Article  Google Scholar 

  • Hastenrath S, Nicklis A, Greischar L (1993) Atmospheric–hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean. J Geophys Res 98:20219–20235

    Article  Google Scholar 

  • Hostetler SW (1995) hydrological and thermal response of lakes to climate: description and modelling. In: Lerman A, Imboden D, Gat J (eds) Physics and chemistry of lakes. Springer-Verlag, Berlin, pp 63–82

    Google Scholar 

  • Kouraev AV, Kostianoy AG, Lebedev SA (2009) Recent changes of sea level and ice cover in the Aral Sea derived from satellite data (1992–2006). J Mar Syst 76(3):272–286. doi:10.1016/j.jmarsys.2008.03.016

    Article  Google Scholar 

  • Legresy B, Remy F (1997) Surface characteristics of the Antartic ice Sheet and altimetric observations. J Glaciology 43(144):197–206

    Google Scholar 

  • Marchant R, Mumbi C, Behera S et al (2006)The Indian Ocean dipole – the unsung driver of climatic variability in East Africa. Afr J Ecol 45(1):4–16

    Google Scholar 

  • Medina, C, Gomez-Enri J, Alonso J et al (2008) Water level fluctuations derived from Envisat Radar altimetry (RA-2) and in situ measurements in a subtropical water body: Lake Izabal (Guatemala). Remote Sens Environ. doi:10.1016/J.rse.2008.05.001

    Google Scholar 

  • Mercier F, Cazenave A, Maheu C (2002) Interannual lake level fluctuations in Africa from TOPEX-Poseidon: connections with ocean-atmosphere interactions over the Indian Ocean. Global Planet Change 32:141–163

    Article  Google Scholar 

  • Mistry V, Conway D (2003) Remote forcing of East African rainfall and relationships with fluctuations in levels of Lake Victoria. Int J Climatol 23(1):67–89

    Article  Google Scholar 

  • New M, Todd M, Hulme M et al (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21:1899–1922

    Article  Google Scholar 

  • Nicholson SE (1996) A review of climate dynamics and climate variability in eastern Africa. In: Johnson T, Odada E (eds) The limnology, climatology and paleoclimatology of the East African Lakes. Gordon & Breach, Amsterdam, the Netherlands, pp 25–56

    Google Scholar 

  • Nicholson S (2001) A semi-quantitative, regional precipitation data set for studying African climates of the nineteenth century, Part I. Overview of the data set. Climatic Change 50:317–353

    Google Scholar 

  • Nicholson SE, Yin X (2002) Mesoscale patterns of rainfall, cloudiness and evaporation over the Great lakes of East Africa. In: Odada E, Olago DO (eds) The East African great lakes: limnology, paleolimnology and biodiversity, vol 12. Kluwer, Dordrecht, pp 92–120

    Google Scholar 

  • Ogallo LJ (1988) Relationships between seasonal rainfall in East Africa and the southern oscillation. J Climatol 8:31–43

    Article  Google Scholar 

  • Plisnier PD, Coenen EJ (2001) Pulsed and dampened annual limnological fluctuations in Lake Tanganyika. In: Munawar M, Hecky RE (eds) The great lakes of the world: food-web, health and integrity. Backhuys, Leiden, the Netherlands, pp 83–96

    Google Scholar 

  • Randall DA, Wood RA, Bony S et al (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Richard Y (1994) Variabilite pluviometrique en Afrique du Sud-Est. La Meteorologie 8:11–22

    Google Scholar 

  • Rodriguez E, Chapman B (1989) Extracting ocean surface information from altimeter returns: the deconvolution method. J Geophys Res 94(C7):9761–9778

    Google Scholar 

  • Romanovski VV (2002) Water level variations and water balance of Lake Issykkul. In: Klerkx J, Imanackunov B (eds) Lake Issykkul: its natural environment. Kluwer, Norwell, MA, pp 45–57

    Google Scholar 

  • Ropelewski CF, Halpert MS (1996) Quantifying southern oscillation–precipitation relationships. J Clim 9:1043–1059

    Article  Google Scholar 

  • Rubanov IV, Ichniazov DP, Vaskakova MA et al (1987) Geologia Aralskogo More. FAN, Tachkent, 248 p

    Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN et al (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Small EE, Giorgi F, Sloan LC et al (2001) The effects of desiccation and climate change on the hydrology of the Aral Sea. J Clim 14:300–322

    Article  Google Scholar 

  • Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process 11:1427–1439

    Article  Google Scholar 

  • Stager JC, Ryves D, Cumming BF et al (2005) Solar variability and the levels of Lake Victoria, East Africa, during the last millenium. J Paleolimnol 33:243–251

    Article  Google Scholar 

  • Stager JC, Ruzmaikin A, Conway D et al (2007) Sunspots, El Niño, and the levels of Lake Victoria, East Africa. J Geophys Res 112:D15106

    Article  Google Scholar 

  • Swenson S, Wahr J (2009) Monitoring the water balance of Lake Victoria, East Africa, from Space. J Hydrol 370:163–176. doi:10.1016/j.jhydrol.2009.03.008

    Google Scholar 

  • Tierney JE, Russell JM (2007) Abrupt climate change in southeast tropical Africa influenced by Indian monsoon variability and ITCZ migration. Geophys Res Lett 34:L15709

    Article  Google Scholar 

  • Verschuren D (2003) Lake-based climate reconstruction in Africa: progress and challenges. Hydrobiologia 500:315–330

    Article  Google Scholar 

  • Wingham DJ, Rapley CG, Griffiths H (1986) New techniques in satellite altimeter tracking systems. In: Proceedings of IGARSS’86 symposium, Zurich, 8–11 September 1986, ESA SP-254: 1339–1344

    Google Scholar 

  • Xu CY, Widen E, Halldin S (2005) Modelling hydrological consequences of climate change – progress and challenges. Adv Atmos Sci 22(6):789–797

    Article  Google Scholar 

  • Zola RP, Bengtsson L (2006) Long-term and extreme water level variations of the shallow Lake Poopo, Bolivia. Hydrol Sci J 51(1):98–114

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the CTOH in Legos for providing altimetry data in a standard and useful form. Authors thank the ECOS-SUR program, which allocated funds for cooperation between France and Chile for the study of Andean lakes. Authors thank INTAS and NATO science program for supporting research on lakes in Central Asia, which has been used as case studies presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Crétaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crétaux, JF., Calmant, S., del Rio, R.A., Kouraev, A., Bergé-Nguyen, M., Maisongrande, P. (2011). Lakes Studies from Satellite Altimetry. In: Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J. (eds) Coastal Altimetry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12796-0_19

Download citation

Publish with us

Policies and ethics