Skip to main content

Aspartic Peptidase Inhibitors as Potential Bioactive Pharmacological Compounds Against Human Fungal Pathogens

  • Chapter
  • First Online:
Combating Fungal Infections

Abstract

The development of novel antifungal drugs is becoming more demanding every day since existing drugs either have too many side-effects or they tend to lose effectiveness due to resistant fungal strains. In view of this, a number of new strategies to obstruct fungal biological processes have emerged; one of them is focused on peptidase inhibition. This particular class of hydrolytic enzymes cleaves peptide bond in proteinaceous substrates, a reaction extremely important in maintaining the physiology of all living cells. Interestingly, peptidases are also essential virulence factors for prokaryotic and eukaryote micro-organisms, including fungi, during all stages of the infection process. Consequently, peptidases are potential targets for the development of future antifungal drugs. This chapter will focus on the potential use of aspartic peptidase inhibitors against human fungal pathogens, showing the capability of these bioactive pharmacological compounds to arrest vital fungal processes such as growth, differentiation, nutrition, and interaction with host components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad-Zapatero C, Goldman R, Muchmore SW, Hutchins C, Stewart K, Navaza J, Payne CD, Ray TL (1996) Structure of a secreted aspartic protease from C. albicans complexed with a potent inhibitor: implications for the design of antifungal agents. Protein Sci 5:640–652

    Article  PubMed  CAS  Google Scholar 

  • Abbenante G, Fairlie DP (2005) Protease inhibitors in the clinic. Med Chem 1:71–104

    Article  PubMed  CAS  Google Scholar 

  • Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, Maccallum D, Odds FC, Schafer W, Klis F, Monod M, Hube B (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host–pathogen interactions. J Biol Chem 281:688–694

    Article  PubMed  CAS  Google Scholar 

  • Babiker A, Darbyshire J, Pezzotti P, Porter K, Rezza G, Walker SA, Beral V, Coutinho R, del Amo J, Gill N, Lee C, Meyer L, Tyrer F, Dabis F, Thiebaut R, Lawson-Aye S, Boufassa F, Hamouda O, Fischer K, Rezza G, Touloumi G, Hatzakis A, Karafoulidou A, Katsarou O, Brettle R, del Romero J, Prins M, van Benthem B, Kirk O, Pederson C, Hernández AI, Pérez-Hoyos S, Eskild A, Bruun JN, Sannes M, Sabin C, Lee C, Johnson AM, Phillips AN, Francioli P, Vanhems P, Egger M, Rickenbach M, Cooper D, Kaldor J, Ashton L, Vizzard J, Muga R, Day NE (2002) Changes over calendar time in the risk of specific first AIDS-defining events following HIV seroconversion, adjusting for competing risks. Int J Epidemiol 31:951–958

    Article  PubMed  Google Scholar 

  • Barrett AJ, Rawlings ND, O'Brien EA (2001) The MEROPS database as a protease information system. J Struct Biol 134:95–102

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ, Tolle DP, Rawlings ND (2003) Managing peptidases in the genomic era. Biol Chem 384:873–882

    Article  PubMed  CAS  Google Scholar 

  • Beausejour A, Grenier D, Goulet JP, Deslauriers N (1998) Proteolytic activation of the interleukin-1beta precursor by Candida albicans. Infect Immun 66:676–681

    PubMed  CAS  Google Scholar 

  • Bektić J, Lell CP, Fuchs A, Stoiber H, Speth C, Lass-Flörl C, Borg-von Zepelin M, Dierich MP, Würzner R (2001) HIV protease inhibitors attenuate adherence of Candida albicans to epithelial cells in vitro. FEMS Immunol Med Microbiol 31:65–71

    Article  PubMed  Google Scholar 

  • Benes P, Vetvicka V, Funsek M (2008) Cathepsin D — many functions of aspartic protease. Crit Rev Oncol Hematol 68:12–28

    Article  PubMed  Google Scholar 

  • Blasi E, Colombari B, Orsi CF, Pinti M, Troiano L, Cossarizza A, Esposito R, Peppoloni S, Mussini C, Neglia R (2004) The human immunodeficiency virus (HIV) protease inhibitor indinavir directly affects the opportunistic fungal pathogen Cryptococcus neoformans. FEMS Immunol Med Microbiol 42:187–195

    Article  PubMed  CAS  Google Scholar 

  • Blundell TL, Johnson MS (1993) Catching a common fold. Protein Sci 2:877–883

    Article  PubMed  CAS  Google Scholar 

  • Borelli C, Ruge E, Lee JH, Schaller M, Vogelsang A, Monod M, Korting HC, Huber R, Maskos K (2008) X-ray structures of Sap1 and Sap5: structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins 72:1308–1319

    Article  PubMed  CAS  Google Scholar 

  • Borg M, Ruchel R (1988) Expression of extracellular acid proteinase by proteolytic Candida spp. during experimental infection of oral mucosa. Infect Immun 56:626–631

    PubMed  CAS  Google Scholar 

  • Borg-von Zepelin M, Meyer I, Thomssen R, Würzner R, Sanglard D, Telenti A, Monod M (1999) HIV-protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Invest Dermatol 113:747–751

    Article  PubMed  Google Scholar 

  • Capobianco JO, Lerner CG, Goldman RC (1992) Application of a fluorogenic substrate in the assay of proteolytic activity and in the discovery of a potent inhibitor of Candida albicans aspartic proteinase. Anal Biochem 204:96–102

    Article  PubMed  CAS  Google Scholar 

  • Carme B, Ngolet A, Ebikili B, Ngaporo AI (1990) Is African histoplasmosis an opportunistic fungal infection in AIDS? Trans R Soc Trop Med Hyg 84:293

    Article  PubMed  CAS  Google Scholar 

  • Casolari C, Rossi T, Baggio G, Coppi A, Zandomeneghi G, Ruberto AI, Farina C, Fabio G, Zanca A, Castelli M (2004) Interaction between saquinavir and antimycotic drugs on C. albicans and C. neoformans strains. Pharmacol Res 50:605–610

    Article  PubMed  CAS  Google Scholar 

  • Cassone A, de Bernardis F, Mondello F, Ceddia T, Agatensi L (1987) Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Infect Dis 156:777–783

    Article  PubMed  CAS  Google Scholar 

  • Cassone A, de Bernardis F, Pontieri E, Carruba G, Girmenia C, Martino P, Fernández-Rodriguez M, Quindós G, Pontón J (1995) Biotype diversity of C. parapsilosis and its relationship to the clinical source and experimental pathogenicity. J Infect Dis 171:967–975

    Article  PubMed  CAS  Google Scholar 

  • Cassone A, de Bernardis F, Torosantucci A, Tacconelli E, Tumbarello M, Cauda R (1999) In vitro and in vivo anticandidal activity of human immunodeficiency virus protease inhibitors. J Infect Dis 180:448–453

    Article  PubMed  CAS  Google Scholar 

  • Cenci E, Francisci D, Belfiori B, Pierucci S, Baldelli F, Bistoni F, Vecchiarelli A (2008) Tipranavir exhibits different effects on opportunistic pathogenic fungi. J Infect 56:58–64

    Article  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2001) HIV/AIDS surveillance report. US Department of Health and Human Services Public Health Service, Atlanta, GA

    Google Scholar 

  • Chakrabarti A, Nayak N, Talwar P (1991) In vitro proteinase production by Candida species. Mycopathologia 114:163–168

    Article  PubMed  CAS  Google Scholar 

  • Coates L, Erskine PT, Mall S, Gill R, Wood SP, Myles DA, Cooper JB (2006) X-ray, neutron and NMR studies of the catalytic mechanism of aspartic proteinases. Eur Biophys J 35:559–566

    Article  PubMed  CAS  Google Scholar 

  • Consolaro ME, Gasparetto A, Svidzinski TI, Peralta RM (2006) Effect of pepstatin A on the virulence factors of Candida albicans strains isolated from vaginal environment of patients in three different clinical conditions. Mycopathologia 162:75–82

    Article  PubMed  CAS  Google Scholar 

  • Coombs GH, Goldberg DE, Klemba M, Berry C, Kay J, Mottram JC (2001) Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol 17:532–537

    Article  PubMed  CAS  Google Scholar 

  • Cooper JB (2002) Aspartic proteinases in disease: a structural perspective. Curr Drug Targets 3:155–174

    Article  PubMed  CAS  Google Scholar 

  • Copping VM, Barelle CJ, Hube B, Gow NA, Brown AJ, Odds FC (2005) Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. J Antimicrob Chemother 55:645–654

    Article  PubMed  CAS  Google Scholar 

  • Costa EMMB, Santos ALS, Cardoso AS, Portela MB, Abreu CM, Alviano CS, Hagler NA, Soares RMA (2003) Heterogeneity of metallo and serine extracellular proteinases in oral clinical isolates of Candida albicans in HIV-positive and healthy children from Rio de Janeiro, Brazil. FEMS Immunol Med Microbiol 38:173–180

    Article  CAS  Google Scholar 

  • Crum NF, Riffenburgh RH, Wegner S, Agan BK, Tasker SA, Spooner KM, Armstrong AW, Fraser S, Wallace MR, Triservice AIDS Clinical Consortium (2006) Comparisons of causes of death and mortality rates among HIV-infected persons: analysis of the pre-, early, and late HAART (highly active antiretroviral therapy) eras. J Acquir Immune Defic Syndr 41:194–200

    Article  PubMed  Google Scholar 

  • Da Rosa D, Gezuele E, Calegari L, Goñi F (2009) Excretion–secretion products and proteases from live Sporothrix shenckii yeast phase: immunological detection and cleavage of human IgG. Rev Inst Med Trop São Paulo 51:1–7

    Article  PubMed  Google Scholar 

  • Dash C, Kulkarni A, Dunn B, Rao M (2003) Aspartic peptidase inhibitors: implications in drug development. Crit Rev Biochem Mol Biol 38:89–119

    Article  PubMed  CAS  Google Scholar 

  • Davies DR (1990) The structure and function of the aspartic proteinases. Ann Rev Biophys Chem 19:189–215

    Article  CAS  Google Scholar 

  • De Bernardis F, Arancia S, Morelli L, Hube B, Sanglard D, Schafer W, Cassone A (1999a) Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis. J Infect Dis 179:201–208

    Article  PubMed  Google Scholar 

  • De Bernardis F, Mondello F, San Millan R, Ponton J, Cassone A (1999b) Biotyping and virulence properties of skin isolates of C. parapsilosis. J Clin Microbiol 37:3481–3486

    PubMed  Google Scholar 

  • De Bernardis F, Sullivan PA, Cassone A (2001) Aspartyl proteinases of Candida albicans and their role in pathogenicity. Med Mycol 39:303–313

    Article  PubMed  Google Scholar 

  • Dostál J, Hamal P, Pavlícková L, Soucek M, Ruml T, Pichová I, Hrusková-Heidingsfeldová O (2003) Simple method for screening Candida species isolates for the presence of secreted proteinases: a tool for the prediction of successful inhibitory treatment. J Clin Microbiol 41:712–716

    Article  PubMed  CAS  Google Scholar 

  • Eigenheer RA, Jin Lee Y, Blumwald E, Phinney BS, Gelli A (2007) Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res 7:499–510

    Article  PubMed  CAS  Google Scholar 

  • El-Maghrabi EA, Dixon DM, Burnett JW (1990) Characterization of Candida albicans epidermolytic proteases and their role in yeast-cell adherence to keratinocytes. Clin Exp Dermatol 15:183–191

    Article  PubMed  CAS  Google Scholar 

  • Falkensammer B, Pilz G, Bektic J, Imwidthaya P, Jöhrer K, Speth C, Lass-Flörl C, Dierich MP, Würzner R (2007) Absent reduction by HIV protease inhibitors of Candida albicans adhesion to endothelial cells. Mycoses 50:172–177

    Article  PubMed  CAS  Google Scholar 

  • Fallon K, Bausch K, Noonan J, Huguenel E, Tamburini P (1997) Role of aspartic proteases in disseminated Candida albicans infection in mice. Infect Immun 65:551–556

    PubMed  CAS  Google Scholar 

  • Felk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schafer W, Hube B (2002) Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun 70:3689–3700

    Article  PubMed  CAS  Google Scholar 

  • Finlay BB, Falkow S (1989) Common themes in microbial pathogenicity. Microbiol Rev 53:210–230

    PubMed  CAS  Google Scholar 

  • Flexner C (1998) HIV-protease inhibitors. N Engl J Med 338:1281–1292

    Article  PubMed  CAS  Google Scholar 

  • Fotedar R, Al-Hedaithy SS (2005) Comparison of phospholipase and proteinase activity in Candida albicans and C. dubliniensis. Mycoses 48:62–67

    Article  PubMed  CAS  Google Scholar 

  • Fruton JS (2002) A history of pepsin and related enzymes. Quart Rev Biol 77:127–147

    Article  PubMed  CAS  Google Scholar 

  • Fusek M, Smith EA, Monod M, Foundling SI (1993) Candida parapsilosis expresses and secretes two aspartic proteinases. FEBS Lett 327:108–112

    Article  PubMed  CAS  Google Scholar 

  • Fusek M, Smith EA, Monod M, Dunn BM, Foundling SI (1997) Extracellular aspartic proteinases from Candida albicans, Candida tropicalis, and Candida parapsilosis yeasts differ substantially in their specificities. Biochemistry 33:9791–9799

    Google Scholar 

  • Gaedicke S, Firat-Geier E, Constantiniu O, Lucchiari-Hartz M, Freudenberg M, Galanos C, Niedermann G (2002) Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir: induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Res 62:6901–6908

    PubMed  CAS  Google Scholar 

  • Ghannoum M, Abu Elteen K (1986) Correlative relationship between proteinase production adherence and pathogenicity of various strains of Candida albicans. J Med Vet Mycol 24:407–413

    Article  PubMed  CAS  Google Scholar 

  • Gokce G, Cerikcioglu N, Yagci A (2007) Acid proteinase, phospholipase, and biofilm production of Candida species isolated from blood cultures. Mycopathologia 164:265–269

    Article  PubMed  CAS  Google Scholar 

  • Gruber A, Lukasser-Vogl E, Borg-von Zepelin M, Dierich MP, Würzner R (1998) Human immunodeficiency virus type 1 gp160 and gp41 binding to Candida albicans selectively enhances candidal virulence in vitro. J Infect Dis 177:1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Gruber A, Lukasser-Vogl E, Zepelin MB, Dierich MP, Würzner R (1999a) Human immunodeficiency virus type 1 gp160 and gp41 binding to Candida albicans selectively enhances candidal virulence in vitro. J Infect Dis 177:1057–1063

    Article  Google Scholar 

  • Gruber A, Speth C, Lukasser-Vogl E, Borg-von Zepelin M, Dierich MP, Würzner R (1999b) Human immunodeficiency virus type 1 protease inhibitor attenuates Candida albicans virulence properties in vitro. Immunopharmacology 41:227–234

    Article  PubMed  CAS  Google Scholar 

  • Haas DW, Stone J, Clough LA, Johnson B, Spearman P, Harris VL, Nicotera J, Johnson RH, Raffanti S, Zhong L, Bergqwuist P, Chamberlin S, Hoagland V, Ju WD (2000) Steady-state pharmacokinetics of indinavir in cerebrospinal fluid and plasma among adults with human immunodeficiency virus type1 infection. Clin Pharmacol Ther 68:367–374

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Phylip L (1997) Bacterial aspartic proteinases. FEBS Lett 409:357–360

    Article  PubMed  CAS  Google Scholar 

  • Hoegl L, Thoma-Greber E, Röcken M, Korting HC (1998) HIV protease inhibitors influence the prevalence of oral candidosis in HIV-infected patients: a 2-year study. Mycoses 41:321–325

    Article  PubMed  CAS  Google Scholar 

  • Horimoto Y, Dee DR, Yada RY (2009) Multifunctional aspartic peptidase prosegments. New Biotechnol 25:318–324

    Article  CAS  Google Scholar 

  • Hube B (1996) Candida albicans secreted aspartyl proteinases. Curr Top Med Mycol 7:55–69

    PubMed  CAS  Google Scholar 

  • Hube B, Naglik J (2001) Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147:1997–2005

    PubMed  CAS  Google Scholar 

  • Hube B, Monod M, Schofield DA, Brown AJ, Gow NA (1994) Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 14:87–99

    Article  PubMed  CAS  Google Scholar 

  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schafer W, Brown AJ, Gow NA (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65:3529–3538

    PubMed  CAS  Google Scholar 

  • Hughens PW, Burger DM, de Graaff M, ter Hofstede HJ, Hoetelmans RM, Brinkman K, Meenhorst PL, Mulder JW, Koopmans PP, Hekster YA (1998) Saliva as a possible specimen for monitoring compliance and plasma levels in patients treated with indinavir. In: Program and abstracts 12th World AIDS Conference, Stockholm: International AIDS Society, Geneva, abstract 32330

    Google Scholar 

  • James MNG (1998) Structure and function of aspartic protease: retroviral and cellular enzymes. Plenum, New York, pp 1–481

    Google Scholar 

  • Kappert K, Caglayan E, Baumer AT, Sudkamp M, Fatkenheuer G, Rosenkranz S (2004) Ritonavir exhibits anti-atherogenic properties on vascular smooth muscle cells. AIDS 18:403–411

    Article  PubMed  CAS  Google Scholar 

  • Kato I, Yasunuga T, Ikawa Y, Yoshinaka Y (1987) Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor. Nature 329:654–656

    Article  Google Scholar 

  • Kaur R, Ma B, Cormack BP (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. PNAS 104:7628–7633

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi I, Kondoh Y, Shimizu K, Tanaka K (1989) A role of secreted proteinase of Candida albicans for the invasion of chick chorioallantoic membrane. Microbiol Immunol 33:709–719

    PubMed  CAS  Google Scholar 

  • Koelsch G, Mares M, Metcalf P, Funsek M (1994) Multiple functions of pro-parts of aspartic proteinase zymogen. FEBS Lett 343:6–10

    Article  PubMed  CAS  Google Scholar 

  • Koelsch G, Tang J, Loy JA, Monod M, Jackson K, Foundling SI, Lin X (2000) Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim Biophys Acta 1480:117–131

    Google Scholar 

  • Koo HL, Hamill RJ, Andrade RA (2007) Drug–drug interaction between itraconazole and efavirenz in a patient with AIDS and disseminated histoplasmosis. Clin Infect Dis 45:e77–e79

    Article  PubMed  CAS  Google Scholar 

  • Korting HC, Schaller M, Eder G, Hamm G, Böhmer U, Hube B (1999) Effects of the human immunodeficiency virus (HIV) proteinase inhibitors saquinavir and indinavir on in vitro activities of secreted aspartyl proteinases of Candida albicans isolates from HIV-infected patients. Antimicrob Agents Chemother 43:2038–2042

    PubMed  CAS  Google Scholar 

  • Kretschmar M, Hube B, Bertsch T, Sanglard D, Merker R, Schroder M, Hof H, Nichterlein T (1999) Germ tubes and proteinase activity contribute to virulence of Candida albicans in murine peritonitis. Infect Immun 67:6637–6642

    PubMed  CAS  Google Scholar 

  • Krysan DJ, Ting EL, Abeijon C, Kroos L, Fuller RS (2005) Yapsins are a family of aspartyl protease required for cell wall integrity in Saccharomyces cerevisiae. Eukaryot Cell 4:1364–1374

    Article  PubMed  CAS  Google Scholar 

  • Lei PC, Yoshiike T, Ogawa H (1993) Effects of proteinase inhibitors on the cutaneous lesion of Sporothrix schenckii inoculated hairless mice. Mycopathologia 123:81–85

    Article  PubMed  CAS  Google Scholar 

  • Levitz SM, Specht CA (2006) The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res 6:513–524

    Article  PubMed  CAS  Google Scholar 

  • Lin X (2009) Cryptococcus neoformans: morphogenesis, infection, and evolution. Infect Genet Evol 9:401–416

    Article  PubMed  CAS  Google Scholar 

  • Louie A, Dixon DM, El-Maghrabi EA, Burnett JW, Baltch AL, Smith RP (1994) Relationship between Candida albicans epidermolytic proteinase activity and virulence in mice. J Med Vet Mycol 32:59–64

    Article  PubMed  CAS  Google Scholar 

  • Mastrolorenzo A, Rusconi S, Scozzafava A, Barbaro G, Supuran CT (2007) Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr Med Chem 14:2734–2748

    Article  PubMed  CAS  Google Scholar 

  • McKinsey DS, Spiegel RA, Hutwagner L, Stanford J, Driks MR, Brewer J, Gupta MR, Smith DL, O'Connor MC, Dall L (1997) Prospective study of histoplasmosis in patients infected with human immunodeficiency virus: incidence, risk factors, and pathophysiology. Clin Infect Dis 24:1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper MA, Winkler R, Ton A, Jabra-Rizk MA (2009) A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS ONE 4:e5039

    Article  PubMed  CAS  Google Scholar 

  • Mendes A, Moraes AU, Carvalho AP, Rosa RT, Samaranayake LP, Rosa EA (2007) Candida albicans biofilms produce more secreted aspartyl protease than the planktonic cells. Biol Pharm Bull 30:1813–1815

    Article  PubMed  CAS  Google Scholar 

  • Monari C, Pericolini E, Bistoni G, Cenci E, Bistoni F, Vecchiarelli A (2005) Influence of indinavir on virulence and growth of Cryptococcus neoformans. J Infect Dis 191:307–311

    Article  PubMed  CAS  Google Scholar 

  • Monod M, Togni G, Hube B, Sanglard D (1994) Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol 13:357–368

    Article  PubMed  CAS  Google Scholar 

  • Monod M, Hube B, Hess D, Sanglard D (1998) Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology 144:2731–2737

    Article  PubMed  CAS  Google Scholar 

  • Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419

    Article  PubMed  CAS  Google Scholar 

  • Morrow B, Srikantha T, Soll DR (1992) Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol Cell Biol 12:2997–3005

    PubMed  CAS  Google Scholar 

  • Muotoe-Okafor FA, Gugnani HC, Obidoa OO (1996) Extracellular proteolytic enzyme activity of Histoplasma capsulatum var. duboisii. Mycopathologia 133:129–133

    Article  PubMed  CAS  Google Scholar 

  • Mussini C, Pezzotti P, Miro JM, Martinez E, de Quiros JC, Cinque P, Borghi V, Bedini A, Domingo P, Cahn P, Bossi P, de Luca A, d’Arminio Monforte A, Nelson M, Nwokolo N, Helou S, Negroni R, Jacchetti G, Antinori S, Lazzarin A, Cossarizza A, Esposito R, Antinori A, Aberg JA (2004) Discontinuation of maintenance therapy for cryptococcal meningitis in patients with AIDS treated with highly active antiretroviral therapy: an international observational study. Clin Infect Dis 38:565–571

    Article  PubMed  Google Scholar 

  • Na BK, Chung GT, Song CY (1999) Production, characterization and epitope mapping of a monoclonal antibody against aspartic proteinase of Candida albicans. Clin Diagn Lab Immunol 6:429–433

    PubMed  CAS  Google Scholar 

  • Naglik JR, Newport G, White TC, Fernandes-Naglik LL, Greenspan JS, Greenspan D, Sweet SP, Challacombe SJ, Agabian N (1999) In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun 67:2482–2490

    PubMed  CAS  Google Scholar 

  • Naglik JR, Challacombe SJ, Hube B (2003a) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428

    Article  PubMed  CAS  Google Scholar 

  • Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes-Naglik LL, Greenspan D, Agabian N, Challacombe SJ (2003b) Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 188:469–479

    Article  PubMed  CAS  Google Scholar 

  • Naglik JR, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926

    Article  PubMed  CAS  Google Scholar 

  • Naglik JR, Scott J, Rahman D, Mistry M, Challacombe SJ (2005) Serum and saliva antibodies do not inhibit Candida albicans Sap2 proteinase activity using a BSA hydrolysis assay. Med Mycol 43:73–77

    Article  PubMed  CAS  Google Scholar 

  • Navarathna DH, Hornby JM, Hoerrmann N, Parkhurst AM, Duhamel GE, Nickerson KW (2005) Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J Antimicrob Chemother 56:1156–1159

    Article  PubMed  CAS  Google Scholar 

  • Nguyen JT, Hamada Y, Kimura T, Kiso Y (2008) Design of potent aspartic protease inhibitors to treat various diseases. Arch Pharm Chem Life Sci 341:523–535

    Article  CAS  Google Scholar 

  • Ollert MW, Sohnchen R, Korting HC, Ollert U, Brautigam S, Brautigam W (1993) Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun 61:4560–4568

    PubMed  CAS  Google Scholar 

  • Ollert MW, Wende C, Gorlich M, McMullan-Vogel CG, Borg-von Zepelin M, Vogel CW, Korting HC (1995) Increased expression of Candida albicans secretory proteinase, a putative virulence factor, in isolates from human immunodeficiency virus-positive patients. J Clin Microbiol 33:2543–2549

    PubMed  CAS  Google Scholar 

  • Ozkan S, Kaynak F, Kalkancı A, Abbasoglu U, Kustimur S (2005) Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents. Mem Inst Oswaldo Cruz 100:319–323

    Article  PubMed  Google Scholar 

  • Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860

    Article  PubMed  Google Scholar 

  • Palmeira VF, Kneipp LF, Alviano CS, Santos ALS (2006a) The major chromoblastomycosis fungal pathogen Fonsecaea pedrosoi extracellularly releases proteolytic enzymes whose expression is modulated by culture medium composition: implications on the fungal development and cleavage of key’s host structures. FEMS Immunol Med Microbiol 46:21–29

    Article  PubMed  CAS  Google Scholar 

  • Palmeira VF, Kneipp LF, Alviano CS, Santos ALS (2006b) Secretory aspartyl peptidase from mycelia of Fonsecaea pedrosoi: effect of HIV peptidase inhibitors. Res Microbiol 157:819–826

    Article  PubMed  CAS  Google Scholar 

  • Palmeira VF, Kneipp LF, Rozental S, Alviano CS, Santos ALS (2008) Beneficial effects of HIV aspartyl peptidase inhibitors on the human pathogen Fonsecaea pedrosoi: promising compounds to arrest key fungal biological process and virulence. PLoS ONE 3:e3382

    Article  PubMed  CAS  Google Scholar 

  • Parra-Ortega B, Cruz-Torres H, Villa-Tanaca L, Hernández-Rodríguez C (2009) Phylogeny and evolution of the aspartyl protease family from clinically relevant Candida species. Mem Inst Oswaldo Cruz 104:505–512

    Article  PubMed  CAS  Google Scholar 

  • Pericolini E, Cenci E, Monari C, Perito S, Mosci P, Bistoni G, Vecchiarelli A (2006) Indinavir-treated Cryptococcus neoformans promotes an efficient antifungal immune response in immunosuppressed hosts. Med Mycol 44:119–126

    Article  PubMed  CAS  Google Scholar 

  • Pericolini E, Cenci E, Gabrielli E, Perito S, Mosci P, Bistoni F, Vecchiarelli A (2008) Indinavir influences biological function of dendritic cells and stimulates antifungal immunity. J Leukoc Biol 83:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Pinti M, Orsi CF, Gibellini L, Esposito R, Cossarizza A, Blasi E, Peppoloni S, Mussini C (2007) Identification and characterization of an aspartyl protease from Cryptococcus neoformans. FEBS Lett 581:3882–3886

    Article  PubMed  CAS  Google Scholar 

  • Potter DA, Srirangam A, Fiacco KA, Brocks D, Hawes J, Herndon C, Maki M, Acheson D, Herman IM (2003) Calpain regulates enterocyte brush border actin assembly and pathogenic Escherichia coli-mediated effacement. J Biol Chem 278:30403–30412

    Article  PubMed  CAS  Google Scholar 

  • Pozio E, Morales MAG (2005) The impact of HIV-protease inhibitors on opportunistic parasites. Trends Parasitol 21:58–63

    Article  PubMed  CAS  Google Scholar 

  • Randolph JT, DeGoey DA (2004) Peptidomimetic inhibitors of HIV protease. Curr Top Med Chem 4:671–686

    Article  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    PubMed  CAS  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004a) MEROPS: the peptidase database. Nucleic Acids Res 32:D160–D164

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004b) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acid Res 34:D270–D272

    Article  PubMed  CAS  Google Scholar 

  • Reichard U, Eiffert H, Rüchel R (1994) Purification and characterization of an extracellular aspartic proteinase from Aspergillus fumigatus. J Med Vet Mycol 32:427–436

    Article  PubMed  CAS  Google Scholar 

  • Reichard U, Monod M, Rfichel R (1996) Expression pattern of aspartic proteinase antigens in aspergilli. Mycoses 39:99–101

    Article  PubMed  CAS  Google Scholar 

  • Reichard U, Monod M, Odds F, Rüchel R (1997) Virulence of an aspergillopepsin-deficient mutant of Aspergillus fumigatus and evidence for another aspartic proteinase linked to the fungal cell wall. J Med Vet Mycol 35:189–196

    Article  PubMed  CAS  Google Scholar 

  • Ripeau JS, Aumont F, Belhumeur P, Ostrosky-Zeichner L, Rex JH, de Repentigny L (2002) Effect of the echinocandin caspofungin on expression of Candida albicans secretory aspartyl proteinases and phospholipase in vitro. Antimicrob Agents Chemother 46:3096–3100

    Article  PubMed  CAS  Google Scholar 

  • Roberts NA, Martin JA, Kinchington D, Broadhurst AV, Craig JC, Duncan IB, Galpin SA, Handa BK, Kay J, Krohn A (1990) Rational design of peptide-based HIV proteinase inhibitors. Science 248:358–361

    Article  PubMed  CAS  Google Scholar 

  • Rüchel R, Ritter B, Schaffrinski M (1990) Modulation of experimental systemic murine candidosis by intravenous pepstatin. Zentralbl Bakteriol 273:391–403

    Article  PubMed  Google Scholar 

  • Rüchel R, Zimmermann F, Boning-Stutzer B, Helmchen U (1991) Candidiasis visualised by proteinase-directed immunofluorescence. Virchows Arch A Pathol Anat Histopathol 419:199–202

    Article  PubMed  Google Scholar 

  • Sanglard D, Hube B, Monod M, Odds FC, Gow NA (1997) A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65:3539–3546

    PubMed  CAS  Google Scholar 

  • Santos ALS, Carvalho IM, Silva BA, Portela MB, Alviano CS, Soares RMA (2006) Secretion of serine peptidase by a clinical strain of Candida albicans: influence of growth conditions and cleavage of human serum proteins and extracellular matrix components. FEMS Immunol Med Microbiol 46:209–220

    Article  PubMed  CAS  Google Scholar 

  • Santos ALS, Palmeira VF, Rozental S, Kneipp LF, Nimrichter L, Alviano DS, Rodrigues ML, Alviano CS (2007) Biology and pathogenesis of Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis. FEMS Microbiol Rev 31:570–591

    Article  PubMed  CAS  Google Scholar 

  • Schaller M, Bein M, Korting HC, Baur S, Hamm G, Monod M, Beinhauer S, Hube B (2003) The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71:3227–3234

    Article  PubMed  CAS  Google Scholar 

  • Schaller M, Korting HC, Borelli C, Hamm G, Hube B (2005) Candida albicans secreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis. Infect Immun 73:2758–2765

    Article  PubMed  CAS  Google Scholar 

  • Scott BB, McGeehan GM, Harrison RK (2006) Development of inhibitors of the aspartyl protease renin for the treatment of hypertension. Curr Protein Pept Sci 7:241–254

    Article  PubMed  CAS  Google Scholar 

  • Sepkowitz KA (2001) AIDS — the first 20 years. N Engl J Med 344:1764–1772

    Article  PubMed  CAS  Google Scholar 

  • Sgadari C, Monini P, Barillari G, Ensoli B (2002) Use of HIV protease inhibitors to block Kaposi’s sarcoma and tumour growth. Lancet Oncol 4:537–547

    Article  CAS  Google Scholar 

  • Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J (2009) Biofilms of non-Candida albicans species: quantification, structure and matrix composition. Med Mycol 20:1–9

    Article  Google Scholar 

  • Stewart K, Abad-Zapatero C (2001) Candida proteases and their inhibition: prospects for antifungal therapy. Curr Med Chem 8:941–948

    Article  PubMed  CAS  Google Scholar 

  • Smolenski G, Sullivan PA, Cutfield SM, Cutfield JF (1997) Analysis of secreted aspartic proteinases from Candida albicans: purification and characterization of individual Sap1, and Sap3 isoenzymes. Microbiology 143:349–356

    Google Scholar 

  • Symersky J, Monod M, Foundling SI (1997) High-resolution structure of the extracellular aspartic proteinase from Candida tropicalis yeast. Biochemistry 36:12700–12710

    Article  PubMed  CAS  Google Scholar 

  • Tacco BA, Parente JA, Barbosa MS, Bao SN, Goes TD, Pereira M, Soares CM (2009) Characterization of a secreted aspartyl protease of the fungal pathogen Paracoccidioides brasiliensis. Med Mycol 47:845–854

    Google Scholar 

  • Takahashi K (1995) Aspartic peptidases: structure, function, biology and biomedical implications. Plenum, New York

    Google Scholar 

  • Tarcha EJ, Basrur V, Hung CY, Gardner MJ, Cole GT (2006) A recombinant aspartyl protease of Coccidioides posadasii induces protection against pulmonary coccidioidomycosis in mice. Infect Immun 74:516–527

    Article  PubMed  CAS  Google Scholar 

  • Tavanti A, Pardini G, Campa D, Davini P, Lupetti A, Senesi S (2004) Differential expression of secretory aspartyl proteinase genes (SAP1-10) in oral Candida albicans isolates with distinct karyotypes. J Clin Microbiol 42:4726–4734

    Article  PubMed  CAS  Google Scholar 

  • Tavanti A, Campa D, Bertozzi A, Pardini G, Naglik JR, Barale R, Senesi S (2006) Candida albicans isolates with different genomic backgrounds display a differential response to macrophage infection. Microb Infect 8:791–800

    Article  CAS  Google Scholar 

  • Taylor BN, Hannemann H, Sehnal M, Biesemeier A, Schweizer A, Röllinghoff M, Schröppel K (2005) Induction of SAP7 correlates with virulence in an intravenous infection model of candidiasis but not in a vaginal infection model in mice. Infect Immun 73:7061–7063

    Article  PubMed  CAS  Google Scholar 

  • Tsang CS, Hong I (2010) HIV protease inhibitors differentially inhibit adhesion of Candida albicans to acrylic surfaces. Mycoses Jun 15 [Epub ahead of print]

    Google Scholar 

  • Tsuboi R, Sanada T, Takamori K, Ogawa H (1987) Isolation and properties of extracellular proteinases from Sporothrix schenckii. J Bacteriol 169:4104–4109

    PubMed  CAS  Google Scholar 

  • Tsuboi R, Sanada T, Ogawa H (1988) Influence of culture medium pH and proteinase inhibitors on extracellular proteinase activity and cell growth of Sporothrix schenckii. J Clin Microbiol 26:1431–1433

    PubMed  CAS  Google Scholar 

  • UNAIDS/WHO (2005) Report on annual AIDS epidemic update. United Nations Publications, New York http://www.unaids.org/epi/2005/

  • van Burik JA, Magee PT (2001) Aspects of fungal pathogenesis in humans. Annu Rev Microbiol 55:743–772

    Article  PubMed  Google Scholar 

  • van den Hombergh JP, Sollewijn Gelpke MD, van de Vondervoort PJ, Buxton FP, Visser J (1997a) Disruption of three acid proteases in Aspergillus niger-effect on protease spectrum, intracellular proteolysis, and degradation of target proteins. Eur J Biochem 247:605–613

    Article  PubMed  Google Scholar 

  • van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L, Visser J (1997b) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256–263

    Article  PubMed  Google Scholar 

  • Vassar R (2002) β-Secretase (BACE) as a drug target for Alzheimer’s disease. Adv Drug Deliv Rev 54:1589–1602

    Article  PubMed  CAS  Google Scholar 

  • Vecchiarelli A (2000) Immunoregulation by capsular components of Cryptococcus neoformans. Med Mycol 38:407–417

    PubMed  CAS  Google Scholar 

  • Vecchiarelli A, Pietrella D, Dottorini M, Monari C, Retini C, Todisco T, Bistoni F (1994) Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Exp Immunol 98:217–223

    Article  CAS  Google Scholar 

  • Vickers I, Reeves EP, Kavanagh KA, Doyle S (2007) Isolation, activity and immunological characterisation of a secreted aspartic protease, CtsD, from Aspergillus fumigatus. Protein Expr Purif 53:216–224

    Article  PubMed  CAS  Google Scholar 

  • Vilanova M, Teixeira L, Caramalho I, Torrado E, Marques A, Madureira P, Ribeiro A, Ferreira P, Gama M, Demengeot J (2004) Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunol 111:334–342

    Article  CAS  Google Scholar 

  • Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A (2007) Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim 101p and protease Sap5p. Infect Immun 75:2126–2135

    Article  PubMed  CAS  Google Scholar 

  • Vlahakis SR, Bennett SAL, Whitehead SN, Badley AD (2007) HIV protease inhibitors modulate apoptosis signaling in vitro and in vivo. Apoptosis 12:969–977

    Article  PubMed  CAS  Google Scholar 

  • Walmsley S (2007) Protease inhibitor-based regimens for HIV therapy safety and efficacy. J Acquir Immune Defic Syndr 45:S5–S13

    Article  PubMed  CAS  Google Scholar 

  • Watts HJ, Cheah FS, Hube B, Sanglard D, Gow NA (1998) Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiol Lett 159:129–135

    Article  PubMed  CAS  Google Scholar 

  • White TC, Agabian N (1995) Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 177:5215–5221

    PubMed  CAS  Google Scholar 

  • White TC, Miyasaki SH, Agabian N (1993) Three distinct secreted aspartyl proteinases in Candida albicans. J Bacteriol 175:6126–6133

    PubMed  CAS  Google Scholar 

  • Wlodawer A, Erickson J (1993) Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem 62:543–585

    Article  PubMed  CAS  Google Scholar 

  • Wolf T, Findhammer S, Nolte B, Helm EB, Brodt HR (2003) Inhibition of TNF-alpha mediated cell death by HIV-1 specific protease inhibitors. Eur J Med Res 8:17–24

    PubMed  CAS  Google Scholar 

  • Wu T, Wright K, Hurst SF, Morrison CJ (2000) Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole. Antimicrob Agents Chemother 44:1200–1208

    Article  PubMed  CAS  Google Scholar 

  • Yoshiike T, Lei PC, Komatsuzaki H, Ogawa H (1993) Antibody raised against extracellular proteinases of Sporothrix schenckii in S. schenckii inoculated hairless mice. Mycopathologia 123:69–73

    Article  PubMed  CAS  Google Scholar 

  • Yücel A, Kantarcıoglu AS (2001) The determination of some virulence factors (phospholipase, protease, germ tube formation and adherence) of C. albicans and the correlative relationship of these factors. Turk J Infect 15:517–525

    Google Scholar 

  • Zaidi N, Kalbacher H (2008) Cathepsin E: a mini review. Biochem Biophys Res Commun 367:517–522

    Article  PubMed  CAS  Google Scholar 

  • Zingman BS (1996) Resolution of refractory AIDS-related mucosal candidiasis after initiation of didanosine plus saquinavir. N Engl J Med 334:1674–1675

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to dedicate this chapter to Marta Helena Branquinha for the scientific collaboration as well as for the great friendship. I would also like to thank Roberta Valle for technical assistance. The author is a research fellow of the following Brazilian agencies: CNPq and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luis Souza dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santos, A.L.S.d. (2010). Aspartic Peptidase Inhibitors as Potential Bioactive Pharmacological Compounds Against Human Fungal Pathogens. In: Ahmad, I., Owais, M., Shahid, M., Aqil, F. (eds) Combating Fungal Infections. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12173-9_13

Download citation

Publish with us

Policies and ethics