Skip to main content

Vertical Discretizations: Some Basic Ideas

  • Chapter
  • First Online:
Numerical Techniques for Global Atmospheric Models

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 80))

Abstract

This chapter introduces some key ideas in the design of vertical discretizations for atmospheric models. Various choices of vertical coordinate are possible, and the most widely used ones are introduced. The requirement to retain certain conservation properties can constrain or determine aspects of the discretization: this is illustrated using the Simmons and Burridge angular momentum and energy conserving scheme for hydrostatic models. Another important set of issues surrounds the ability to capture hydrostatic balance and wave dispersion accurately and to avoid computational modes: some implications for the vertical discretization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean. Mon Wea Rev 125:2293–2315

    Article  Google Scholar 

  2. Arakawa A, Moorthi S (1988) Baroclinic instability in vertically discrete systems. J Atmos Sci 45:1688–1707

    Article  Google Scholar 

  3. Charney JG, Phillips NA (1953) Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flow. J Meteorol 10:71–99

    Article  MathSciNet  Google Scholar 

  4. Durran DD (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag

    Google Scholar 

  5. Gal-Chen T, Somerville RC (1975) On the use of a coordinate transformation for the solution of navier-stokes equations. J Comput Phys 17:209–228

    Article  MathSciNet  Google Scholar 

  6. Hsu YJG, Arakawa A (1990) Numerical modeling of the atmosphere with an isentropic vertical coordinate. Mon Wea Rev 118:1933–1959

    Article  Google Scholar 

  7. Kasahara A (1974) Various vertical coordinate systems used for numerical weather prediction. Mon Wea Rev 102(7):509–522

    Article  Google Scholar 

  8. Konor CS, Arakawa A (1997) Design of an atmospheric model based on a generalized vertical coordinate. Mon Wea Rev 125(7):1649–1673

    Article  Google Scholar 

  9. Lin SJ (2004) A ‘vertically Lagrangian’ finite-volume dynamical core for global models. Mon Wea Rev 132:2293–2307

    Article  Google Scholar 

  10. Lorenz EN (1960) Energy and numerical weather prediction. Tellus 12:364–373

    Article  Google Scholar 

  11. Phillips NA (1957) A coordinate system having some special advantage for numerical forecasting. J Meteor 14:184–185

    Article  Google Scholar 

  12. Schneider EK (1987) An inconsistency in vertical discretization in some atmospheric models. Mon Wea Rev 115:2166–2169

    Article  Google Scholar 

  13. Shaw TA, Shepherd TG (2007) Angular momentum conservation and gravity wave drag para- metrization: Implications for climate models. J Atmos Sci 64:190–203

    Article  Google Scholar 

  14. Simmons AJ, Burridge DM (1981) An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon Wea Rev 109(4):758–766

    Article  Google Scholar 

  15. Staniforth A, Wood N (2003) The deep-atmosphere Euler equations in a generalized vertical coordinate. Mon Wea Rev 131:1931–1938

    Article  Google Scholar 

  16. Starr VP (1945) A quasi-Lagrangian system of hydrodynamical equations. J Atmos Sci 2:227–237

    MathSciNet  Google Scholar 

  17. Thuburn J (2006) Vertical discretizations giving optimal representation of normal modes: Sensitivity to the form of the pressure gradient term. Quart J Roy Meteorol Soc 132:2809–2825

    Article  Google Scholar 

  18. Thuburn J, Woollings TJ (2005) Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes. J Comput Phys 203:386–404

    Article  MATH  MathSciNet  Google Scholar 

  19. Tokioka T (1978) Some considerations on vertical differencing. J Meteorol Soc Japan 56:98–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Thuburn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thuburn, J. (2011). Vertical Discretizations: Some Basic Ideas. In: Lauritzen, P., Jablonowski, C., Taylor, M., Nair, R. (eds) Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11640-7_4

Download citation

Publish with us

Policies and ethics