Skip to main content

NP-Completeness of the Direct Energy Barrier Problem without Pseudoknots

  • Conference paper
DNA Computing and Molecular Programming (DNA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5877))

Included in the following conference series:

Abstract

Knowledge of energy barriers between pairs of secondary structures for a given DNA or RNA molecule is useful, both in understanding RNA function in biological settings and in design of programmed molecular systems. Current heuristics are not guaranteed to find the exact energy barrier, raising the question whether the energy barrier can be calculated efficiently. In this paper, we study the computational complexity of a simple formulation of the energy barrier problem, in which each base pair contributes an energy of − 1 and only base pairs in the initial and final structures may be used on a folding pathway from initial to final structure. We show that this problem is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kameda, A., Yamamoto, M., Uejima, H., Hagiya, M., Sakamoto, K., Ohuchi, A.: Hairpin-based state machine and conformational addressing: Design and experiment. Natural Computing 4, 103–126 (2005)

    Article  MathSciNet  Google Scholar 

  2. Yurke, B., Turberfield, A.J., Mills, A.J.J., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  3. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)

    Article  Google Scholar 

  4. Simmel, F.C., Dittmer, W.U.: DNA nanodevices. Small 1, 284–299 (2005)

    Article  Google Scholar 

  5. Uejima, H., Hagiya, M.: Secondary structure design of multi-state DNA machines based on sequential structure transitions. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 74–85. Springer, Heidelberg (2004)

    Google Scholar 

  6. Hagiya, M., Yaegashi, S., Takahashi, K.: Computing with hairpins and secondary structures of DNA. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science and Computation. Natural Computing Series, pp. 293–308. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Yin, P., Choi, H., Calvert, C., Pierce, N.: Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008)

    Article  Google Scholar 

  8. Uejima, H., Hagiya, M.: Analyzing secondary structure transition paths of DNA/RNA molecules. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 86–90. Springer, Heidelberg (2004)

    Google Scholar 

  9. Chen, S.J., Dill, K.A.: RNA folding energy landscapes. Proc. Nat. Acad. Sci. 97(2), 646–651 (2000)

    Article  Google Scholar 

  10. Russell, R., Zhuang, X., Babcock, H., Millett, I., Doniach, S., Chu, S., Herschlag, D.: Exploring the folding landscape of a structured RNA. Proc. Nat. Acad. Sci. 99, 155–160 (2002)

    Article  Google Scholar 

  11. Shcherbakova, I., Mitra, S., Laederach, A., Brenowitz, M.: Energy barriers, pathways, and dynamics during folding of large, multidomain RNAs. Curr. Opin. Chem. Biol., 655–666 (2008)

    Google Scholar 

  12. Treiber, D.K., Williamson, J.R.: Beyond kinetic traps in RNA folding. Curr. Opin. Struc. Biol. 11, 309–314 (2001)

    Article  Google Scholar 

  13. Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P.: RNA folding at elementary step resolution. RNA, 325–338 (2000)

    Google Scholar 

  14. Tang, X., Thomas, S., Tapia, L., Giedroc, D.P., Amato, N.M.: Simulating RNA folding kinetics on approximated energy landscapes. J. Mol. Biol. 381, 1055–1067 (2008)

    Article  Google Scholar 

  15. van Batenburg, F.H.D., Gultyaev, A.P., Pleij, C.W.A., Ng, J., Oliehoek, J.: Pseudobase: a database with RNA pseudoknots. Nucl. Acids Res. 28(1), 201–204 (2000)

    Article  Google Scholar 

  16. Wolfinger, M.T.: The energy landscape of RNA folding. Master’s thesis, University Vienna (2001)

    Google Scholar 

  17. Flamm, C., Hofacker, I.L., Stadler, P.F., Wolfinger, M.T.: Barrier trees of degenerate landscapes. Zeitschrift für Physikalische Chemie 216, 155–174 (2002)

    Article  Google Scholar 

  18. Morgan, S.R., Higgs, P.G.: Barrier heights between ground states in a model of RNA secondary structure. J. Phys. A: Math. Gen. 31, 3153–3170 (1998)

    Article  MATH  Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  20. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: a foundation for computer science. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maňuch, J., Thachuk, C., Stacho, L., Condon, A. (2009). NP-Completeness of the Direct Energy Barrier Problem without Pseudoknots. In: Deaton, R., Suyama, A. (eds) DNA Computing and Molecular Programming. DNA 2009. Lecture Notes in Computer Science, vol 5877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10604-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10604-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10603-3

  • Online ISBN: 978-3-642-10604-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics